
 
 
 
Exam :   070-330
              
Title    :  Implementing Security for Applications 
              with Microsoft Visual Basic .NET
                 
 Ver     :   12.26.06



070-330 

Actualtests.com - The Power of Knowing 
 

 
QUESTION 1: 
 
You are an application developer for Certkiller .com. You develop library assemblies that 
are called by your main applications. These library assemblies access confidential data in 
the applications. To ensure that this data is not accessed in an unauthorized and unsafe 
manner, users must not be allowed to call the library assemblies from their own 
applications. You apply a strong name to all assemblies to support versioning. 
You need to prevent users from writing managed applications that make calls to your 
library assemblies. You need to achieve this goal while minimizing the impact on response 
times for applications. 
What should you do? 
 
A. Use the internal access modifier to declare all classes and structures in each library. 
B. Use the protected internal access modifier to declare all classes and structures in each library. 
C. Add the following attribute to each class and structure in each library assembly: 
<StrongNameIdentityPermission(SecurityAction.Demand, 
PublicKey:="002400..bda4")> 
D. Add the following attribute to each class and structure in each library assembly: 
<StrongNameIdentityPermission(SecurityAction.LinkDemand, 
PublicKey:="002400..bda4")> 
 
Answer: C 
 
Explanation:  
StrongNameIdentityPermission Class 
Defines the identity permission for strong names. This class cannot be inherited. 
For a list of all members of this type, see StrongNameIdentityPermission Members. 
System.Object 
System.Security.CodeAccessPermission 
System.Security.Permissions.StrongNameIdentityPermission 
 
NotInheritable Public Class StrongNameIdentityPermission 
Inherits CodeAccessPermission 
Remarks 
Use StrongNameIdentityPermission to achieve versioning and naming protection by confirming 
that the calling code is in a particular strong-named code assembly. 
A strong name identity is based on a cryptographic public key called a blob optionally combined 
with the name and version of a specific assembly. The key defines a unique namespace and 
provides strong verification that the name is genuine, because the definition of the name must be 
in an assembly signed by the corresponding private key. 
Note that the validity of the strong name key is not dependent on a trust relationship or any 
certificate necessarily being issued for the key. 
Note Full demands for StrongNameIdentityPermission succeed only if all the assemblies in the 
stack have the correct evidence to satisfy the demand. Link demands using 
StrongNameIdentityPermissionAttribute succeed if only the immediate caller has the correct 



070-330 

Actualtests.com - The Power of Knowing 
 

evidence. 
Demands 
You can use the security demand call declaratively or imperatively to specify the permissions 
that direct or indirect callers must have to access your library. Direct callers explicitly call static 
or instance methods of your library, while indirect callers call static or instance methods of 
another library that calls your library. When you use a demand, any application that includes 
your code will execute only if all direct and indirect callers have the permissions that the 
demand specifies. Demands are particularly useful in situations in which your class library uses 
protected resources that you do not want to be accessed by untrusted code. Demands can be 
placed in code using either imperative or declarative syntax. 
Note that most classes in the .NET Framework already have demands associated with them, so 
you do not need to make an additional demand whenever you use a class that accesses a 
protected resource. 
Link Demands 
A link demand causes a security check during just-in-time compilation and checks only the 
immediate caller of your code. Linking occurs when your code is bound to a type reference, 
including function pointer references and method calls. If the caller does not have sufficient 
permission to link to your code, the link is not allowed and a runtime exception is thrown when 
the code is loaded and run. Link demands can be overridden in classes that inherit from your 
code. 
Just-in-Time compilation 
Languages in the .NET Framework compile to Microsoft Intermediate Language (IL) ready for 
the JiT (Just-in-Time) compiler to turn them into native code when the program is installed or 
first run. The runtime engine pulls in uncompiled functions for compilation on the fly as 
required. 
 
 



070-330 

Actualtests.com - The Power of Knowing 
 

 



070-330 

Actualtests.com - The Power of Knowing 
 

 
The following example shows how to demand that the calling code has 
StrongNameIdentityPermission at link time. Code will only execute if signed with a strong name 
using the private key counterpart of the specified public key 
 
"00240000048000009400000006020000002400005253413100040000010" & 
_"00100538a4a19382e9429cf516dcf1399facdccca092a06442efaf9ecaca33457be26ee0" & 
_"073c6bde51fe0873666a62459581669b510ae1e84bef6bcb1aff7957237279d8b7e0e25b" & 
_"71ad39df36845b7db60382c8eb73f289823578d33c09e48d0d2f90ed4541e1438008142e" & 
_"f714bfe604c41a4957a4f6e6ab36b9715ec57625904c6")> Public Class SampleClassRestrict 
Unauthorized Code 
By using .NET Framework code access security - specifically, code identity demands - you can 
limit the assemblies that can access your data access classes and methods. 
For example, if you only want code written by your company or a specific development 
organization to be able to use your data access components, use a 
StrongNameIdentityPermission and demand that calling assemblies have a strong name with a 
specified public key, as shown in the following code fragment: 
using system.security permission; 
. . . 
[StrongNameIdentityPermission(SecurityAction.LinkDemand, 
PublicKey="002...4c6")] 
public void GetCustomerInfo(int CustId) 
{} 
To extract a text representation of the public key for a given assembly, use the following 
command: 
sn -Tp assembly.dll 
Note Use an uppercase "T" in the -Tp switch. 
Because Web application assemblies are dynamically compiled, you cannot use strong names for 
these assemblies. This makes it difficult to restrict the use of a data access assembly to a specific 
Web application. The best approach is to develop a custom permission and demand that 
permission from the data access component. Full trust Web applications (or any fully trusted 
code) can call your component. Partial trust code, however, can call your data access component 
only if it has been granted the custom permission. 
When You Should Use Demands?Your code is always subject to permission demand checks 
from the .NETFramework class library, but if your code uses explicit permission demands, check 
that this is done appropriately. Search your code for the ".Demand" string to identity declarative 
and imperative permission demands, and then review the following questions: 
* Do you cache data? 
If so, check whether or not the code issues an appropriate permission demand prior to accessing 
the cached data. For example, if the data is obtained from a file, and you want to ensure that the 
calling code is authorized to access the file from where you populated the cache, demand a 
FileIOPermission prior to accessing the cached data. 
* Do you expose custom resources or privileged operations? 
If your code exposes a custom resource or privileged operation through unmanaged code, check 
that it issues an appropriate permission demand, which might be a built-in permission type or a 
custom permission type depending on thenature of the resource. 



070-330 

Actualtests.com - The Power of Knowing 
 

* Do you demand soon enough? 
Check that you issue a permission demand prior to accessing the resource or performing the 
privileged operation. Do not access the resource and then authorize the caller. 
* Do you issue redundant demands? 
Code that uses the .NETFramework class libraries is subject to permission demands. Your code 
does not need to issue the same demand. This results in aduplicated and wasteful stack walk. 
When to Use Link Demands?Link demands, unlike regular demands, only check the immediate 
caller. They do not perform a full stack walk, and as a result, code that uses link demands is 
subject to luring attacks. For information on Luring Attacks, see "Link Demands" in Chapter 8, 
"Code Access Security in Practice." 
Search your code for the ".LinkDemand" string to identify where link demands are used. They 
can only be used declaratively. An example is shown in the following code fragment: 
[StrongNameIdentityPermission(SecurityAction.LinkDemand, 
PublicKey="00240000048...97e85d098615")]public static void SomeOperation() {}* Why are 
you using a link demand? 
A defensive approach is to avoid link demands as far as possible. Do not use them just to 
improve performance and to eliminate full stack walks. Compared to the costs of other Web 
application performance issues such as network latency and database access, the cost of the stack 
walk is small. Link demands are only safe ifyou know and can limit which code can call your 
code. 
* Do you trust your callers? 
When you use a link demand, you rely on the caller to prevent a luring attack. Link demands are 
safe only if you know and can limit the exact set of direct callers into your code, and you can 
trust those callers to authorize their callers. 
* Do you call code that is protected with link demands? 
If so, does your code provide authorization by demanding a security permission from the callers 
of your code? Can the arguments passed to your methods pass through to the code that you call? 
If so, can they maliciously influence the code you call? 
* Have you used link demands at the method and class level? 
When you add link demands to a method, it overrides the link demand on the class. Check 
that the method also includes class-level link demands. 
* Do you use link demands on classes that are not sealed? 
Link demands are not inherited by derived types and are not used when an overridden method is 
called on the derived type. If you override a method that needs to be protected with a link 
demand, apply the link demand to the overridden method. 
* Do you use a link demand to protect a structure? 
Link demands do not prevent the construction of a structure by an untrusted caller. This is 
because default constructors are not automatically generated for structures, and therefore the 
structure level link demand only applies if you use anexplicit constructor. 
* Do you use explicit interfaces? 
Search for the Interface keyword to find out. If so, check if the method implementations are 
marked with link demands. If they are, check that the interface definitions contain the same link 
demands. Otherwise, it is possible for a caller to bypass the link demand. 
The allowed access modifiers in .NET are public, private, protected, internal, and protected 
internal.These keywords control the visibility of class members (and other things), defining the 
circumstances under which a member may be accessed-hence their collective name as access 



070-330 

Actualtests.com - The Power of Knowing 
 

modifiers. With the exception of the last, protected internal, it's illegal to combine two access 
modifiers. 
Public means just that: public and visible to everyone and everything. A public member can be 
accessed using an instance of a class, by a class's internal code, and by any descendants of a 
class. 
Private is also intuitively understood, meaning hidden and usable only by the class itself. No 
code using a class instance can successfully access a private member and neither can a 
descendant class. 
Protected members are similar to private ones in that they are accessible only by the 
containing class. However, protected members also may be used by a descendant class. So 
members that are likely to be needed by a descendant class should be marked protected. 
Members marked as internal are public to the entire application but private to any outside 
applications. Internal is useful when you want to allow a class to be used by other applications 
but reserve special functionality for the application that contains the class. 
Finally, we have the only compound access modifier allowed in .NET, protected internal. 
Members marked as protected internal may be accessed only by a descendant class that's 
contained in the same application as its base class. You use protected internal in situations where 
you want to deny access to parts of a class' functionality to any descendant classes found in other 
applications. 
Not limited to controlling class access 
As mentioned before, access modifiers aren't limited to use on class members but can be applied 
to a few other code constructs. The rules defining when modifiers may be legally assigned to a 
construct are dependant on the construct's container: 
1. Interface and enumeration members are always public and no access modifiers are needed (or 
allowed). 
2. Classes in namespaces are internal by default and may be either internal or public, while 
namespaces themselves are always public. 
3. Members of a struct are private by default and may be given public, internal, or private access 
modifiers. 

 
QUESTION 2: 
 
You are an application developer for Certkiller .com. You are developing an application 
that can be extended by using custom components. The application uses reflection to 
dynamically load and invoke these custom components. In some cases, custom components 
will originate from a source that is not fully trusted, such as the Internet. 
You need to programmatically restrict the code access security policy under which custom 
components run so that custom components do not run with an elevated permission grant. 
What are two possible ways to achieve this goal? (Each correct answer presents a complete 
solution. Choose two) 
 
A. Create a new application domain and set the security policy level. 
Run custom components in this application domain. 
B. Use permission class operations to modify the security policy. 
C. Implement custom permission classes to protect custom component resources. 
D. Programmatically modify the machine-level security policy file after loading a custom 



070-330 

Actualtests.com - The Power of Knowing 
 

component. 
 
Answer: B, C 
 
Explanation:  
All permission objects must implement the IPermission interface. Inheriting from the 
CodeAccessPermission class is the easiest way to create a custom permission because 
CodeAccessPermission implements IPermission and provides most of the methods required for a 
permission. Additionally, you must implement the IUnrestrictedPermision interface for all 
custom code access permissions. The custom permission class is required for both imperative 
and declarative security support, so you should create it even if you plan to use only declarative 
security. 
Defining the Permission ClassTo derive from the CodeAccessPermission class, you must 
override the following five key methods and provide your own implementation: 
* Copy creates a duplicate of the current permission object. 
* Intersect returns the intersection of allowed permissions of the current class and a passed 
class. 
* IsSubsetOf returns true if a passed permission includes everything allowed by the current 
permission. 
* FromXml decodes an XML representation of your custom permission. 
* ToXml encodes an XML representation of your custom permission. 
The IUnrestrictedPermission interface requires you to override and implement a single method 
called IsUnrestrictedPermission. In order to support the IUnrestrictedPermission interface, you 
must implement some system, such as a Boolean value that represents the state of restriction in 
the current object, to define whether the current instance of the permission is unrestricted. 
NoteCustom permissions should either be marked as sealed (NotInheritable in Visual 
Basic) or have an inheritance demand placed on them. Otherwise, malicious callers are 
able to derive from your permission, potentially causing security vulnerabilities. 
Default security policy does not know about the existence of any custom permission. For 
example, the Everything named permission set contains all the built-in code access permissions 
that the runtime provides, but it does not include any custom permissions. To update security 
policy so that it knows about your custom permission, you must do three things: 
* Make policy aware of your custom permission. 
* Add the assembly to the list of trusted assemblies. 
* Tell security policy what code should be granted to your custom permission. 
Making Policy Aware of Your Custom PermissionTo make policy aware of your custom 
permission, you must: 
* Create a new named-permission set that includes your custom permission. (You can modify an 
existing named-permission set instead of creating a new one.) 
* Give the permission set a name. 
* Tell security policy that the named-permission set exists. 
For more information, see Code Access Security Policy Tool (Caspol.exe) or .NET Framework 
Configuration Tool (Mscorcfg.msc). You can add a new permission set in one of several ways. 
Using the Code Access Security Policy tool (Caspol.exe), you can create an .xml file that 
contains an XML representation of a custom permission set and then add this file to the security 
policy on the computer where the code is to run. Using the .NET Framework Configuration tool 



070-330 

Actualtests.com - The Power of Knowing 
 

(Mscorcfg.msc), you can copy an existing permission set and add an XML representation of a 
permission to the new permission set. 
To guarantee that your XML representation is valid and correctly represents your permission, 
you can generate it using code similar to the example that follows. Notice that this code creates a 
custom permission called MyCustomPermission, initialized to the unrestricted state. If your 
custom permission does not implement IUnrestrictedPermission, or if you do not want to set 
policy to grant your permission in an unrestricted state, use the constructor to initialize your 
permission to the state you want it to have. 
Application domains provide a more secure and versatile unit of processing that the common 
language runtime can use to provide isolation between applications. Application domains are 
typically created by runtime hosts, which are responsible for bootstrapping the common 
language runtime before an application is run. 
You can run several application domains in a single process with the same level of isolation that 
would exist in separate processes, but without incurring the additional overhead of making 
cross-process calls or switching between processes. The ability to run multiple applications 
within a single process dramatically increases server scalability. 
Isolating applications is also important for application security. For example, you can run 
controls from several Web applications in a single browser process in such a way that the 
controls cannot access each other's data and resources. 
The isolation provided by application domains has the following benefits: 
* Faults in one application cannot affect other applications. Because type-safe code cannot cause 
memory faults, using application domains ensures that code running in one domain cannot affect 
other applications in the process. 
* Individual applications can be stopped without stopping the entire process. Using application 
domains enables you to unload the code running in a single application. 
NoteYou cannot unload individual assemblies or types. Only a complete domain can be 
unloaded. 
* Code running in one application cannot directly access code or resources from another 
application. The common language runtime enforces this isolation by preventing direct calls 
between objects in different application domains. Objects that pass between domains are 
either copied or accessed by proxy. If the object is copied, the call to the object is local. 
That is, both the caller and the object being referenced are in the same application domain. 
If the object is accessed through a proxy, the call to the object is remote. In this case, the 
caller and the object being referenced are in different application domains. Cross-domain 
calls use the same remote call infrastructure as calls between two processes or between two 
machines. As such, the metadata for the object being referenced must be available to both 
application domains to allow the method call to be JIT-compiled properly. If the calling 
domain does not have access to the metadata for the object being called, the compilation 
might fail with an exception of type System.IO.FileNotFound. See Accessing Objects in 
Other Application Domains Using .NET Remoting for more details. The mechanism for 
determining how objects can be accessed across domains is determined by the object. For more 
information, see MarshalByRefObject Class. 
* The behavior of code is scoped by the application in which it runs. In other words, the 
application domain provides configuration settings such as application version policies, the 
location of any remote assemblies it accesses, and information about where to locate assemblies 
that are loaded into the domain. 



070-330 

Actualtests.com - The Power of Knowing 
 

* Permissions granted to code can be controlled by the application domain in which the code is 
running. 

 
QUESTION 3: 
 
You are an application developer for Certkiller .com. You are developing an application 
that salespeople in Certkiller will use to process customer orders. This application includes 
a library assembly that implements a serviced component named Order. This serviced 
component adds roles named Certkiller Manager and SalesPerson to the COM+ application 
that hosts it. 
To promote customer satisfaction, salespeople are allowed to apply discounts to orders if 
the order was erroneously delayed. However, only Certkiller Managers are allowed to apply 
discounts greater than 10 percent. The application includes the following method to apply 
the discount. 
Public Function ApplyDiscount (ByVal discountPct As Integer) As 
Boolean 
This method will return a value of False when the current user is not a member of the 
Certkiller Manager role and the value of the discountPct parameter exceeds the maximum 
that other salespeople are allowed to apply. 
You need to add the code that will verify the role membership requirement when the value 
of discountPct is greater than 10. 
Which code segment should you use? 
 
A. If discountPct > 10 And_ 
Thread.CurrentPrincipal.IsInRole(" Certkiller Manager") = False Then 
Return False  
End If 
B. If discountPct > 10 Then 
Dim p As PrincipalPermission = New PrincipalPermission(Nothing, 
" Certkiller Manager") 
If Security Certkiller Manager.IsGranted(p) = False Then 
Return False 
End If 
End if 
C. If discountPct > 10 Then 
Dim p As PrincipalPermission = New PrincipalPermission(Nothing, 
" Certkiller Manager") 
Try 
p.Demand() 
Catch e As SecurityException 
Return False 
End Try 
End If 
D. If discountPct > 10 And _ 
SecurityCallContext.CurrentCall.IsCallerInRole(" Certkiller Manager") 
_ 



070-330 

Actualtests.com - The Power of Knowing 
 

= False Then 
Return False 
End if 
 
Answer: A 
Explanation 
. The SecurityCallContext class provides the method IsCallerInRole, which you can use to 
determine whether the identity of the calling process matches a specified role. (The ContextUtil 
class also supplies IsCallerInRole as a static method). The IsUserInRole method allows you to 
specify an account name and a role and determines whether that account name is assigned to the 
role. 
SecurityCallContext.IsCallerInRole Method 
Verifies that the direct caller is a member of the specified role. 
Public Function IsCallerInRole( _ ByVal roleAs String _) As BooleanParametersrole 
The specified role. 
Return Value  true if the direct caller is a member of the specified role;otherwisefalse.  
RequirementsPlatforms:Windows2000, WindowsXPHomeEdition, WindowsXPProfessional, 
WindowsServer2003family 
.NET Framework Security: 
* Full trust for the immediate caller. This member cannot be used by partially trusted code. For 
more information, see Using Libraries From Partially Trusted Code 
.NET Serviced Components 
http://www.ondotnet.com/pub/a/dotnet/excerpt/com_dotnet_ch10/?page=9 
Verifying Caller's Role MembershipSometimes it is useful to verify programmatically the 
caller's role membership before granting it access. Your serviced components can do that just as 
easily as configured COM components. .NET provides you the helper class SecurityCallContext 
that gives you access to the security parameters of the current call. SecurityCallContext 
encapsulates the COM+ call-object's implementation of ISecurityCallContext. The class 
SecurityCallContext has a public static property called CurrentCall. CurrentCall is a read-only 
property of type SecurityCallContext (it returns an instance of the same type). You use the 
SecurityCallContext object returned from CurrentCall to access the current call. Example 10-14 
demonstrates the use of the security call context to verify a caller's role membership. 
Example 10-14: Verifying the caller's role membership using the SecurityCallContext class 
publicclass Bank :ServicedComponent,IAccountsManager{void TransferMoney(int sum,ulong 
accountsrc, ulong accountdest){bool callerRole =false;callerRole= 
securitycallcontext.currentcall.iscallRole("Customer");if(callerRole)//the caller is a 
customer{if(sum > 5000)throw(new UnauthorizedAccessException(@"Caller does not have 
sufficient credentials to transfer this sum"));}Do Transfer(sum, account Src,account Dest);Helper method } 
//Other methods}You should use the Boolean property IsSecurityEnabledof 
SecurityCallContext to verify that security is enabled before accessing the IsCallerInRole() 
method: 
boolsecurityEnable=securitycallcontext.currentcallis security Enable;if(securityEnable){ 
//the rest of the verification process} 

 
QUESTION 4: 
 



070-330 

Actualtests.com - The Power of Knowing 
 

You are an application developer for Certkiller .com. You develop an application that 
receives data from a remote component. 
You are developing a method to detect any corrupted incoming data and log information to 
a file for analysis. You plan to use two functions. A function named Certkiller Data will be 
called by the remote component. The second function will be called by the local application 
to verify that the data was not corrupted during transmission. 
You need to ensure that corrupted data can be identified. 
Which code segment should you use? 
 
A. Public Function Certkiller Data(ByVal Data As Byte()= As Byte() 
Dim Ms As New MemoryStream 
Ms.Write(Data, 0, Data.Lenght) 
Ms.Write(Data, 0, Data.Lenght) 
Return Ms.ToArray() 
End Function 
B. Public Function Certkiller Data(ByVal Data As Byte()) As Byte() 
Dim Md5 As MD5 = New MD5CryptoServiceProvider 
Dim Ms As New MemoryStream 
Ms.Write(Md5.ComputeHash(Data), 0, Md5.HashSize) 
Ms.Write(Data, 0, Data.Lenght) 
Return Ms.ToArray() 
End Function 
C. Public Function Certkiller Data(ByVal Data As Byte()) As Byte() 
Dim Des As DES = New DESCryptoServiceProvider 
Dim Ms As New MemoryStream 
Ms.Write(Des.Key, 0, Des.Key.Length) 
Ms.Write(Des.IV, 0, Des.IV.Length) 
Dim Cs As New CryptoStream(Ms, Des.CreateEncryptor(), 
CryptoStreamMode.Write) 
Cs.Write(Data, 0, Data.Length) 
Cs.FlushFinalBlock() 
Return Ms.ToArray() 
End Function 
D. Public Function Certkiller Data (ByVal Data As Byte()) As Byte() 
Dim Ms As New MemoryStream 
Dim Sw As New StreamWriter(Ms, Encoding.UTF8= 
Sw.Write(Encoding.UTF8.GetString(Data)) 
Return Ms.ToArray() 
 
Answer: B 
Explanation 
Hash functions map binary strings of an arbitrary length to small binary strings of a fixed length. 
A cryptographic hash function has the property that it is computationally infeasible to find two 
distinct input thathash to the same value;hashes of two sets of data should match if the 
corresponding data also matches. Small changes to the data result in large unpredictable changes 
in the hash. 



070-330 

Actualtests.com - The Power of Knowing 
 

ExampleThe following example computes the MD5 hash for data and stores it in result. This 
example assumes that there is a predefined constant DATA_SIZE. 
Dim data(DATA_SIZE) As Byte' This is one implementation of the abstract class MD5.Dim 
md5 As New MD5CryptoServiceProvider()Dim result As Byte() = md5.ComputeHash(data)It is 
easy to generate and compare hash values using the cryptographic resources contained in the 
System.Security.Cryptography namespace. Because all hash functions take input of type Byte[], 
it might be necessary to convert the source into a byte array before it is hashed. To create a hash 
for a string value, follow these steps: 
1. Open Visual Studio .NET. 
2. Create a new Console Application in Visual Basic .NET. Visual Studio .NET creates a 
Module for you along with an empty Main() procedure. 
3. Make sure that the project references the System and System.Security namespaces. 
4. Use the Imports statement on the System, System.Security, System.Security.Cryptographic, 
and System.Text namespaces so that you are not required to qualify declarations from these 
namespaces later in your code. These statements must be used prior to any other declarations. 
5. Imports System6. Imports System.Security7. Imports System.Security.Cryptography8. 
Imports System.Text9. Declare a string variable to hold your source data, and two byte arrays (of 
undefined size) to hold the source bytes and the resulting hash value. 
10. Dim sSourceData As String11. Dim tmpSource() As 
Byte12. Dim tmpHash() As Byte13. Use the GetBytes() function, which is part 
of the System.Text.ASCIIEncoding.ASCII class, to convert your source string into an array of 
bytes (required as input to the hashing function). 
14. sSourceData = "MySourceData"15. 'Create a byte array 
from source data.16. tmpSource = 
ASCIIEncoding.ASCII.GetBytes(sSourceData)17. Compute the MD5 hash for your source data 
by calling ComputeHash on an instance of the MD5CryptoServiceProvider class. Note that to 
compute another hash value, you will need to create another instance of the class. 
18. 'Compute hash based on source data.19. tmpHash = New 
MD5CryptoServiceProvider().ComputeHash(tmpSource)20. The tmpHash byte array now holds 
the computed hash value (128-bit value=16 bytes) for your source data. It is often useful to 
display or store a value like this as a hexadecimal string, which the following code accomplishes: 
21. Console.WriteLine(ByteArrayToString(tmpHash))22. 23. 
Private Function ByteArrayToString(ByVal arrInput() As Byte) As String24. 
Dim i As Integer25. Dim sOutput As New 
StringBuilder(arrInput.Length)26. For i = 0 To arrInput.Length - 127. 
sOutput.Append(arrInput(i).ToString("X2"))28. Next29. 
Return sOutput.ToString()30. End Function31. Save and then run your code 
to see the resulting hexadecimal string for the source value. 

 
QUESTION 5: 
 
You are an application developer for your company, which is named Certkiller .com. You 
are developing an ASP.NET Web application that users in the accounting department will 
use to process payroll reports and view payroll reports. The application will use Integrated 
Windows authentication to authenticate all users. 
Because payroll data is confidential only users in the accounting department will be 



070-330 

Actualtests.com - The Power of Knowing 
 

granted access to the application. All employees in the accounting department belong to a 
specific Active Directory group. However, users in the IT department can add themselves 
to various Active Directory groups in order to troubleshoot resource access problems. 
These IT department users must not be granted access to the ASP.NET Web application. 
The following rules can be used to distinguish between users in the accounting department 
and users in the IT department: 
1. All users in the accounting department are members of a group named 
Certkiller \Accounting. 
2. Some users in the IT department are members of the Certkiller \Accounting group. 
3. All users in the IT department are members of a group named Certkiller \Domain Admin. 
4. No users in the accounting department are members of the Certkiller \Domain Admin 
group. 
You need to configure URL authorization for the application by adding an <authorization> 
element to the Web.config file in the application root. 
Which element should you use? 
 
A. <authorization> 
<deny roles=" Certkiller \Domain Admin"/> 
<allow roles=" Certkiller \Accounting"/> 
<deny users="*"/> 
</authorization> 
B. <authorization> 
<allow roles=" Certkiller \Accounting"/> 
<deny roles=" Certkiller \Domain Admin"/> 
<dent users="?"/> 
<authorization> 
C. <authorization> 
<deny roles="Domain Admin"/> 
<allow roles="Accounting"/> 
<deny users="*"/> 
</authorization> 
D. <authorization> 
<allow roles="Accounting"/> 
<deny roles="Domain Admin"/> 
<deny users="?"/> 
</authorization> 
 
Answer: A 
Explanation 
<authorization> Element 
Configures ASP.NET authorization support. The <authorization> tag controls client access to 
URL resources. This element can be declared at any level (machine, site, application, 
subdirectory, or page). 
<configuration> 
<system.web> 
<authorization> 



070-330 

Actualtests.com - The Power of Knowing 
 

<authorization> <allow users="comma-separated list of users" roles="comma-separated list of 
roles" verbs="comma-separated list of verbs"/> <deny users="comma-separated list of users" 
roles="comma-separated list of roles" verbs="comma-separated list of verbs" 
/></authorization> 
  
  Subtag Description 
<allow>   Allows access to a resource based on the 
    following: 
    users: A comma-separated list of user 
    names that are granted access to the 
    resource. A question mark (?) allows 
    anonymous user;an asterisk(*)allows 
    all users. 
    roles: A comma-separated list of roles that 
    are granted access to the resource. 
    verbs: A comma-separated list of HTTP 
    transmission methods that are granted 
    access to the resource. Verbs registered to 
    ASP.NET are GET, HEAD, POST, and 
    DEBUG. 
<deny>   Denies access to a resource based on the 
    following: 
    users: A comma-separated list of user 
    names that are denied access to the 
    resource. A question mark (?) indicates 
    that anonymous user are denied access; 
    an asterisk (*) indicates that all users are 
    denied access. 
    roles: A comma-separated list of roles that 
    are denied access to the resource. 
    verbs: A comma-separated list of HTTP 
    transmission methods that are denied 
    access to the resource. Verbs registered to 
    ASP.NET are GET, HEAD, POST, and 
    DEBUG. 
     

RemarksAt run time, the authorization module iterates through the <allow> and <deny> tags until it finds the 
first access rule that fits a particular user. It then grants or denies access to a URL resource 
depending on whether the first access rule found is an <allow> or a <deny> rule. The default 
authorization rule in the Machine.config file is <allow users="*"/> so, by default, access is 
allowed unless configured otherwise. 
ExampleThe following example allows access to all members of the Admins role and denies 



070-330 

Actualtests.com - The Power of Knowing 
 

access to all users. 
<configuration> <system.web> <authorization> <allow roles="Admins"/> <deny users="*"/> 
</authorization> </system.web></configuration> 

 
QUESTION 6: 
 
You are an application developer for Certkiller .com. Your team is developing a Windows 
Forms application. Users will have access to different functionality depending on their 
roles in Certkiller . The application includes the following method. 
Private Shared Function AuthenticateUser (ByVal user As String, 
_ 
ByVal password As String. ByRef roles As String()) As Boolean 
This method authenticates the user against a third-party data store. When authentication 
is successfully, this method returns a value of True, and the string array named roles is 
updated to contain the user's roles. 
You need to write the code that associates an authenticated user and the user's roles with 
the current security context. 
Which code segment should you use? 
 
A. ' p is initialized above as a PrincipalPermission 
If AuthenticateUser (name, password, roles) = True Then 
Dim r As String 
For Each r In Roles 
Dim ppTemp As PrincipalPermission = New 
PrincipalPermission(name, r 
p.Union(ppTemp) 
Next 
End If 
p.IsUnrestricted() 
B. ' p is initialized above as a PrincipalPermission 
If AuthenticateUser (name, password, roles) = True Then 
Dim r As String 
For Each r In roles 
Dim ppTemp As PrincipalPermission = New 
PrincipalPermission(name, r) 
Next 
End If 
p.IsUnrestricted() 
C. If AuthenticateUser(name, password, roles) = True Then 
Dim r As String 
For Each r In roles 
Thread.CurrentPrincipal.IsInRole(r) 
Next 
End If 
D. If AuthenticateUser(name, password, roles) = True Then 



070-330 

Actualtests.com - The Power of Knowing 
 

Thread.CurrentPrincipal = New GenericPrincipal(New 
GenericIdentity(name), roles) 
End If 
 
Answer: D 
Explanation 
Difference Between Declarative and Imperative SecurityThere are two main differences between 
the use of declarative security and imperative security. In declarative security, the roles are 
essentially hard coded at design time, while in imperative security, these can be read from an 
external source such as a database or a config file. While config files can be used for prototypes 
or very simple applications, databases should be the repository of choice for roles. Further, with 
declarative security, the granularity of the access check is a method, while with imperative 
security, the granularity is controlled by the developer. 
The following code illustrates how a caller of such a component can communicate the roles it 
belongs to. This is shown below: 
private void SetupPrincipal (){string lUserName = cbUserName.SelectedItem.ToString 
0;Genericldentity ldentity =new 
Genericldentity(IUserName);string[]IDMRoles={"DistricManagers"};string[]IRMRoles= 
{"RegionalManager"};GenericPrincipal IPPrincipal;if 
(IUserName.Equals("Alex DM")IPPrincipal=new GenericPrincipal II ldentity,IDMRoles);if 
(lUserName.Equals ("Tony RM"))lPrincipal = new GenericPrincipal(lIdentity, 
IRM Roles); Thread.Current Principal=1 Principal;} We first create the identity for the user, and then, based on 
the user name, associate the user name and a role to create a principal. This 
principal is then attached to the current thread object so that this can be accessed by all 
downstream components. 
Creating GenericPrincipal and GenericIdentity Objects 
You can use the GenericIdentity class in conjunction with the GenericPrincipal class to create an 
authorization scheme that exists independent of a Windows NT or Windows 2000 domain. 
Perform the following tasks to create an instance of the GenericPrincipal class. 
1. Create a new instance of the identity class and initialize it with the name you want it to hold. 
The following code creates a new GenericIdentity object and initializes it with the name 
MyUser. 
2. [C#]3. GenericIdentity MyIdentity = new 
Genericldentity("My Usr");4                            Dirn My ldentity As New 
GenericIdentity("MyUser")5. Next, create a new instance of the GenericPrincipal class and 
initialize it with the previously created 
GenericIdentity object and an array of strings that represent the roles that you want associated 
with this principal. The following code example specifies an array of strings that represent an 
administrator role and a user role. The GenericPrincipal is then initialized with the previous 
GenericIdentity and the string array. 
6. [C#]                      7. String[]My stringArry={"Manager"Teller"};8 
GenericPrincipal MyPrincipal=newGenericPrincipal(MyldentitymystringArry);9 
10. Dim MyStringArray As String() = {"Manager", "Teller"}DIm 
MyPrincipal As New GenericPrincipal(MyIdentity, MyStringArray)11. Finally, use the 
following code to attach the principal to the current thread. This is valuable in situations where 
the principal must be validated several times, it must be validated by other code running in your 



070-330 

Actualtests.com - The Power of Knowing 
 

application, or it must be validated by a PrincipalPermission object. You can still perform 
role-based validation on the principal object without attaching it to the thread. For more 
information, see Replacing a Principal Object. 
12.[C#]                                  13. Thread Current Principal=MYPrincipal;14 
Thread.CurrentPrincipal = MyPrincipalThe following code example demonstrates how to create 
an instance of a GenericPrincipal and a GenericIdentity. This code displays the values of these 
classes to the console. 
[C#]Using system; Using system security Principal Using system Threading;public class 
Class1 { public static int Main(string[] args) { //Create generic identity. GenericIdentity 
My ldentity= newGenericldentity("Myldentity");//create GenericPrincipal.string[] 
My stringArry={"Manager"Teller"};Generic Principal MyPrincipal=new 
GenericPrincipal("Myldentity,My stringArry);\\attach the Principalto the current V.\\theis 
is not required unless repeated validation must occur, //other code in your application must 
Validate or the \\Principal permisson object is used.Thread currentPrincipal=MyPrincipal; 
//print value to the consol .string Name=MyPrincipalidenty .Name;boolAuth= 
MyPrincipalidenty.is Authenticated;bool is in Role= 
MyPrincipalis in Role("Manager"); Consol writeline ("The Name is:{0}",Name);  
Consol writeline("The is Authenticated is:{0}",Auth ;Consol writeline("is this Manager? 
{0}",is in Role;return0;}}imports system imports system .security.Principalimports 
System.ThreadingPublic Class Class1Public Shared Sub Main() 'Create generic identity. Dim 
MyIdentity As New GenericIdentity("MyIdentity")'Create generic principal. Dim 
MyStringArray As String() = {"Manager", "Teller"} Dim MyPrincipal As New 
GenericPrincipal(MyIdentity, MyStringArray)'Attach the principal to the current thread. 'This is 
not required unless repeated validation must occur, 'other code in your application must validate, 
or the' PrincipalPermisson object is used.Thread.CurrentPrincipal = MyPrincipal'Print values to 
the console. Dim Name As String = MyPrincipal.Identity.Name Dim Auth As Boolean = 
MyPrincipal.Identity.IsAuthenticated Dim IsInRole As Boolean = 
MyPrincipal.IsInRole("Manager")Console.WriteLine("The Name is: {0}", Name) 
Console.WriteLine("The IsAuthenticated is: {0}", Auth) Console.WriteLine("Is this a Manager? 
{0}", IsInRole)End SubEnd ClassWhen executed, the application displays output similar to the 
following. 
The Name is: MyIdentityThe IsAuthenticated is: TrueIs this a Manager? True 

 
QUESTION 7: 
 
You are an application developer for Certkiller .com. You are developing a three-tier 
Windows Forms application that will be used to manage confidential records. The 
business layer includes a remote object that is installed on an application server. 
The remote object is hosted in ASP.NET on the application server. IIS is configured 
to use Integrated Windows authentication, and ASP.NET is configured to use 
Windows authentication. All client computers and servers on the network support 
Kerberos authentication. The Windows Forms application communicates with the 
remote object by using a remoting proxy named Certkiller Proxy. 
The remote object accessed a Microsoft SQL Server database. Permissions to 
database objects are granted based on the identity of the user. The remote object 
needs to run under the security context of the user. 



070-330 

Actualtests.com - The Power of Knowing 
 

Which code segment should you use? 
 
A. Dim channelProperties As IDictionary 
channelProperties = 
ChannelServices.GetChannelSinkProperties( Certkiller Proxy) 
channelProperties("credentials") = 
CredenticalCache.DefaultCredentials 
B. Dim channelProperties As IDictionary 
Dim cred As NetworkCredential = New 
NetworkCredential(_userName, _psswd) 
channelProperties = 
ChannelServices.GetChannelSinkProperties( Certkiller Proxy) 
channelProperties("credentials") = cred 
C. Dim channelProperties As IDictionary 
channelProperties = 
ChannelServices.GetChannelSinkProperties( Certkiller Proxy) 
channelProperties("credentials") = Thread.CurrentPrincipal 
D. Dim channelProperties As Idictionary 
channelProperties = 
ChannelServices.GetChannelSinkProperties( Certkiller Proxy) 
channelProperties("credentials") = 
Thread.CurrentPrincipal.Identity 
 
Answer: A 
Explanation 
Configure Client CredentialsTo successfully communicate with a remote component that 
is configured for Windows authentication, the client must configure the remoting proxy 
with the credentials to use for authentication. Failure to do so results in an access denied 
error. 
You can configure the use of default credentials to use the client's current thread or 
process token, or you can set explicit credentials. 
Using Default CredentialsTo use the client's process token (or thread token if the client 
thread is currently impersonating), set the useDefaultCredentials property of the client 
proxy to true. This results in the use of CredentialsCache.DefaultCredentials when the 
client receives an authentication challenge from the server. You can configure the proxy 
either by using the configuration file or programmatically in code. To configure the 
proxy externally, use the following element in the client configuration file: 
To set default credentials 
programmatically, use the following code: 
= 
["credentials"] = 
If you use default credentials in an ASP.NET client 
application that is configured for impersonation, the thread level impersonation token is 
used. This requires Kerberos delegation. 
Using Alternate CredentialsTo use a specific set of credentials for authentication when 
you call a remote object, disable the use of default credentials within the configuration 



070-330 

Actualtests.com - The Power of Knowing 
 

file by using the following setting. 
NoteProgrammatic settings always 
override the settings in the configuration file. 
Then, use the following code to configure the proxy to use specific credentials: 
IDictionary channelProperties 
Substitute "authenticationType" with "Negotiate", "Basic", "Digest",// "Kerberos" or 
"NTLM"credCache.Add(objectUri, "authenticationType", 
credentials);channelProperties["credentials"] = 
credCache;channelProperties["preauthenticate"] = true; 

 
QUESTION 8: 
 
You are an application developer for Certkiller .com. You develop an ASP.NET Web 
application for Certkiller 's intranet. The application accesses data that is stored in a 
Microsoft SQL Server database. The application authenticates users by using Windows 
authentication, and it has impersonation enabled. You configure database object 
permissions based on the identity of the user of the application. 
You need to provide the user's identity to the SQL Server database. 
What should you do? 
 
A. Connect to the database by using the following connection string 
properties security info=false;integrated security=SSPI; 
database application on db;sever =data sarver;" 
B. Connect to the database by using the following connection string 
user ID=ASPENET;persist security info=false;integrated security =false 
database application on db;sever =data sarver;" 
C. Develop a serviced component that wraps all database operations. 
Use COM+ role-based security to restrict access to database operations based on user identity. 
D. Disable impersonation. 
 
Answer: A 
Explanation 
We need to configure the following four different areas to access Windows integrated security: 
1. SQL Server 
2. IIS Web Server 
3. ASP.Net web application 
4. ConnectionString 
SQL Server be running on same IIS machine. If both are on different machines, we should go for 
an alternative security model such as Forms authentication, or Kerberos delegation would need 
to be used. The access users must be in the same domain where the Web server is running. 
Configuring SQL ServerTo configure SQL Server for Windows integrated security: 
1. From the Windows Start menu, choose Microsoft SQL Server, and then choose Enterprise 
Manager. 
2. Open the node for the server and expand the node for the database you want to give users 
permissions for. 
3. Right-click the Users node and choose New Database User. 



070-330 

Actualtests.com - The Power of Knowing 
 

4. In the Database User Properties dialog box, enter domain\username in the Login name box, 
and then click OK. Alternatively, configure the SQL Server to allow all domain users to 
access the database. 
Configuring IISYou need to configure your application in IIS to turn off anonymous access and 
turn on Windows authentication. To configure IIS for Windows integrated security: 
1. In Windows, open the Internet Information Services administration tool. 
2. Open the node for your server, and then open nodes until you find the node for your 
application, typically under Default Web Site. 
3. Right-click your application and choose Properties. 
4. In the Directory Security tab, click Edit. 
5. In the Authentication Methods dialog box, clear the Anonymous Access box and make sure 
Integrated Windows authentication is checked. 
6. Click OK to close all the dialog boxes. 
Configuring the ASP.NET Web ApplicationIn the application configuration file (Web.config), 
you establish the authentication mode that your application uses and establish that the 
application will impersonate the user's credentials-that is, that it will run as that user. To 
configure Web.config to allow Windows integrated security: 
Open the Web.config file for your application and add the following elements to it: 
<authentication mode="Windows" /><identity impersonate="true"/>The <authentication> 
element might already be there. 
Creating Connection StringsWhen you create a connection string to access SQL Server, you 
must include attributes that tell SQL Server that you are using Windows integrated security. To 
configure connection strings for Windows integrated security: 
In any connection string for SQL Server, include the Trusted_Connection=Yes attribute and 
remove the username and password attributes. The following shows a typical connection string 
configured for Windows integrated security: 
"data source=sql01;initial catalog= northwide;integrated security =SSPI;persist  
security info=false;trusted_connection=yes 
Sample C# code for connecting SQL server from ASP.Net 
application using windows authentication: 
private void databank (){sql connection = sql connection = ("data source=bondgula; initial  
catalog northwide integrated security SSPI;persist security info=false; 
Trusted_connection =yes");sql connection .open(); sql Data adapter=new sql Dta adapter=new( 
"Select emplyeeID,first name ,last name ,title From  Employees ",sql connection); 
data set= new data set (); sql Data adapter.fill (data set,"Emplyees");data gride1.data source= data set. table 
[Emplyeees].Default view; data grid1.data bind();}important settings in the 
web.config file are as follows:  
<system.web><authentication mode = "Windows"/><identity 
impersonate="true"/><authorization> <allow users = "*"/></authorization><!--other 
settings--></system.web> 

 
QUESTION 9: 
 
You are an application developer for Certkiller .com. You are developing an application 
that receives signed data. The data is signed by using the RSA encryption algorithm and 
the SHA1 hash algorithm. 



070-330 

Actualtests.com - The Power of Knowing 
 

You need to write a function that will verify signatures by using RSA public credentials: 
Which code segment should you use? 
A. 
Public Function Verify Certkiller Signature(ByVal Data As Byte(), 
ByVal Signature As Byte(), _ 
ByVal RsaKey As RSAParameters) As Boolean 
Dim RSA As New RSACryptoServiceProvider 
RSA.ImportParameters(RsaKey) 
Dim MySig As Byte() = RSA.SignData(Data, "SHAI1") 
Dim i As Integer 
For i = 0 To MySig.Length - 1 
If i >= Signature.Length Or Signature(i) <> MySig(i) Then 
Return False 
End if 
Next 
Return True 
End Function. 
B. Public Function Verify Certkiller Signature(ByVal Data() As Byte, 
ByVal Signature As Byte(), _ 
ByVal RsaKey As RSAParameters) As Boolean 
Dim RSA As New RSA CryptoServiceProvider 
RSA.ImportParameters(RsaKey) 
Return RSA.VerifyData(Data, "SHA1", Signature) 
End Function 
C. Public Function Verify Certkiller Signature(ByVal Data As Byte(), 
ByVal Signature As Byte(), _ 
ByVal RsaKey As RSAParameters) As Boolean 
Dim RSA As New RSACryptoServiceProvider 
RSA.ImportParameters(RsaKey) 
Dim MySIg As Byte() = RSA.Decrypt(Data, False) 
Dim i As Integer 
For i = 0 To MySig.Length - 1 
If i >=Signature.Length Or Signature(i) <> MySig(i) Then 
Return False 
End If 
Next 
Return True 
End Function 
D. Public Function Verify Certkiller Signature(ByVal Data As Byte(), 
ByVal Signature As Byte(), _ 
ByVal RsaKey As RSAParameters) As Boolean 
Dim RSA As New RSACryptoServiceProvider 
RSA.ImportParameters(RsaKey) 
Dim shaOID As String = CryptoConfig.MapNameToOID("SHA1") 
 
Answer: B 



070-330 

Actualtests.com - The Power of Knowing 
 

Explanation 
Verifying Signatures 
In order to verify that data was signed by a particular party, you must have the following 
information: 
* The public key of the party that signed the data. 
* The digital signature. 
* The data that was signed. 
* The hash algorithm used by the signer. 
To verify a signature signed by the RSAPKCS1SignatureFormatter class, use the 
RSAPKCS1SignatureDeformatter class. The RSAPKCS1SignatureDeformatter class must be 
supplied the public key of the signer. You will need the values of the modulus and the exponent 
to specify the public key. (The party that generated the public/private key pair should provide 
these values.) First create an RSACryptoServiceProvider object to hold the public key that will 
verify the signature, and then initialize an RSAParameters structure to the modulus and exponent 
values that specify the public key. 
The following code shows the creation of an RSAParameters structure. The Modulus property is 
set to the value of a byte array called ModulusData and the Exponent property is set to the value 
of a byte array called ExponentData. 
Dim RSAKeyInfo As RSAParametersRSAKeyInfo.Modulus = 
ModulusDataRSAKeyInfo.Exponent = ExponentDataAfter you have created the 
RSAParameters object, you can initialize a new instance of the RSACryptoServiceProvider 
class to the values specified in RSAParameters. The RSACryptoServiceProvider is, in turn, 
passed to the constructor of an RSAPKCS1SignatureDeformatter to transfer the key. 
The following example illustrates this process. In this example, HashValue and 
SignedHashValue are arrays of bytes provided by a remote party. The remote party has signed 
the HashValueusing the SHA1 algorithm, producing the digital signature SignedHashValue 
. The RSAPKCS1SignatureDeformatter.VerifySignature method verifies that the digital 
signature is valid and was used to sign the HashValue. 
Dim RSA As New RSACryptoServiceProvider()RSA.ImportParameters(RSAKeyInfo)Dim 
RSADeformatter As New 
RSAPKCS1SignatureDeformatter(RSA)RSADeformatter.SetHashAlgorithm("SHA1")If 
RSADeformatter.VerifySignature(HashValue, SignedHashValue) Then Console.WriteLine("The 
signature is valid.")Else Console.WriteLine("The signature is not valid.")End IfThe above code 
fragment will display "The signature is valid" if the signature is valid and "The signature is not 
valid" if it is not. 
RSACryptoServiceProvider.VerifyData Method 
Verifies the specified signature data by comparing it to the signature computed for the 
specified data. 
[Visual Basic] 
Public Function VerifyData( _ 
ByVal buffer() As Byte, _ 
ByVal halg As Object, _ 
ByVal signature() As Byte _ 
) As Boolean 
Parameters 
buffer 



070-330 

Actualtests.com - The Power of Knowing 
 

The data that was signed. 
halg 
The name of the hash algorithm used to create the hash value of the data. 
signature 
The signature data to be verified. 
Return Value 
true if the signature verifies as valid; otherwise, fales. 
Remarks 
This method verifies the RSA digital signature produced by SignData. 
The halg parameter can accept a String, a HashAlgorithm, or a Type. 
RSACryptoServiceProvider.VerifyHash Method 
Verifies the specified signature data by comparing it to the signature computed for the 
specified hash value. 
[Visual Basic] 
Public Function VerifyHash( _ 
ByVal rgbHash() As Byte, _ 
ByVal str As String, _ 
ByVal rgbSignature() As Byte _ 
) As Boolean 
Parameters 
buffer 
The data that was signed. 
halg 
The name of the hash algorithm used to create the hash value of the data. 
signature 
The signature data to be verified. 
Return Value 
true if the signature verifies as valid; otherwise, fales. 
Remarks 
This method verifies the RSA digital signature produced by SignData. 
The halg parameter can accept a String, a HashAlgorithm, or a Type. 

 
QUESTION 10: 
 
You are an application developer for Certkiller .com. You are developing an application 
that reads the USERNAME environment variable and executes code in an unmanaged 
DLL. The design document specifies that the application must display a custom message 
when the code access security policy restricts access to required resources. 
You need to write the code segment that will ascertain whether your application is 
permitted to access unmanaged code and the USERNAME environment variable. Your 
solution must allow the application to display the custom message when the application is 
being loaded. 
Which code segment should you use? 
 
A. Try 
Dim ep As EnvironmentPermission = New _ 



070-330 

Actualtests.com - The Power of Knowing 
 

EnvironmentPermission(EnvironmentPermissionAccess.Read, 
"USERNAME") 
Dim sp As SecurityPermission = New _ 
SecurityPermission(SecurityPermissionFlag.UnmanagedCode) 
ep.Demand() 
sp.Demand() 
Catch ex As SecurityException 
'... 
End Try 
B. Dim ep As EnvironmentPermission = New _ 
EnvironmentPermission(EnvironmentPermissionAccess.Read, 
"USERNAME") 
Dim sp As SecurityPermission = New _ 
SecurityPermission(SecurityPermissionFlag.UnmanagedCode) 
If Not (ep.IsUnrestricted() And sp.IsUnrestricted()) Then 
' ... 
End If 
C. <EnvironmentPermission(SecurityAction.Demand, 
Read:="USERNAME"), _ 
SecurityPermission(SecurityAction.Demand, UnmanagedCode:=True)> 
_ 
Sub Main() 
' ... 
End Sub 
D. <Assembly: 
EnvironmentPermission(SecurityAction.RequestMinimum, 
Read:="USERNAME")> 
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, 
UnmanagedCode:=True)> 
 
Answer: A 
Explanation 
Try...Catch...Finally Statements 
Provides a way to handle some or all possible errors that may occur in a given block of code, 
while still running code. 
Try [ tryStatements ][ Catch [ exception [ As type ] ] [ When expression ][ catchStatements ] ][ 
ExitTry ]...[ Finally [ finallyStatements ] ]End TryPartstryStatements 
Optional. Statement(s) where an error can occur. Can be a compound statement. 
Catch 
Optional. Multiple Catch blocks permitted. If an exception occurs while processing the Try 
block, each Catch statement is examined in textual order to determine if it handles the exception. 
Exception represents the exception that has been thrown. 
exception 
Optional. Any variable name. The initial value of exception is the value of the thrown error. 
Used with Catch to specify the error caught. 
type 



070-330 

Actualtests.com - The Power of Knowing 
 

Optional. Specifies the type of class filter. If the value of exception is of the type specified by 
type or of a derived type, the identifier becomes bound to the exception object. 
When 
Optional. A Catch statement with a When clause will only catch exceptions when expression 
evaluates to True. A When clause is only applied after checking the type of the exception, and 
expression may refer to the identifier representing the exception. 
expression 
Optional. Must be implicitly convertible to Boolean. Any expression that describes a generic 
filter. Typically used to filter by error number. Used with When keyword to specify 
circumstances under which the error is caught. 
catchStatements 
Optional. Statement(s) to handle errors occurring in the associated 
Try block. Can be a compound statement. 
Exit Try 
Optional. Keyword that breaks out of the Try...Catch...Finally structure. Execution resumes with 
the Finally block if present, otherwise with the code immediately following the End Try 
statement. Not allowed in Finally blocks. 
Finally 
Optional. A Finally block is always executed when execution leaves any part of the Try 
statement. 
finallyStatements 
Optional. Statement(s) that are executed after all other error processing has occurred. 
End Try 
Terminates the Try...Catch...Finally structure. 
RemarksLocal variables from a Try block are not available in a Catch block because they are 
separate blocks. If you want to use a variable in more than one block, declare the variable 
outside the Try...Catch...Finally structure. 
If errors occur that the programmer has not handled, Visual Studio for Applications simply 
provides its normal error message to a user, as if there was no error handling. 
The Try block contains code where an error can occur, while the Catch block contains code to 
handle any error that does occur. If an error occurs in the Try block, program control is passed to 
the appropriate Catch statement for disposition. The exception argument is an instance of the 
Exception class or an instance of a class that derives from the Exception class corresponding to 
the error that occurred in the Try block. The Exception class instance contains information about 
the error including, among other things, its number and message. 
In partial trust situations, such as an application hosted on a network share, Try...Catch...Finally 
will not catch security exceptions that occur before the method containing the call is invoked. 
EnvironmentPermissionAccess Enumeration 
Specifies access to environment variables. 
This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member 
values. 
[Visual Basic] 
<Flags> 
<Serializable> 
Public Enum EnvironmentPermissionAccess 
[C#] 



070-330 

Actualtests.com - The Power of Knowing 
 

[Flags] 
[Serializable] 
public enum EnvironmentPermissionAccess 
Remarks 
This enumeration is used by EnvironmentPermission. 
Note Although NoAccess and AllAccess appear in EnvironmentPermissionAccess, they are not 
valid for use as the parameter for GetPathList because they describe no environment variable 
access types or all environment variable access types, respectively, and GetPathList expects a 
single environment variable access type. 
Members 
  
Member name Description   Value 
AllAccess Read and Write access to 3   
  environment variables.     
  AllAccess represents     
  multiple     
  EnvironmentPermissionAccess   
  values and causes an     
  ArgumentException when     
  used as the flag parameter     
  for the GetPathList method,     
  which expects a single     
  value.     
NoAccess No access to environment 0   
  variables. NoAccess     
  represents no valid     
  EnvironmentPermissionAccess   
  values and causes an     
  ArgumentException when     
  used as the parameter for     
  GetPathList, which expects     
  a single value.     
Read Only read access to 1   
  environment variables is     
  specified. Changing,     
  deleting and creating     
  environment variables is     
  not included in this access     
  level.     
Write Only write access to 2   
  environment variables is     
  specified. Write access     
  includes creating and     



070-330 

Actualtests.com - The Power of Knowing 
 

  deleting environment     
  variables as well as     
  changing existing values.     
  Reading environment     
  variables is not included in     
  this access level.     
      

SecurityPermissionFlag.UnmanagedCode Field 
UnmanagedCode=0x2: 
Specifies the ability to call unmanaged code. 
[Note: Because unmanaged code potentially allows other permissions to be bypassed, this 
permission should be used with caution. It is used for applications calling native code using 
PInvoke.] 
Not putting RequestMinimum on the assembly will not provide the necessary security. All it will 
ensure is that the assembly will not load unless it is granted UnmanagedCode permission. It does 
not put any limitations on what code can call into this assembly. Now, if the assembly is strong 
name signed and does not have APTCA (AllowPartiallyTrustedCallersAttribute), all public 
methods effectively have an implicit LinkDemand for FullTrust, so this should be safe. If there is 
APTCA on the assembly, then the only remedy (apart from completely changing the design) is 
putting a LinkDemand (or a Demand) on it and making sure only the right code (for example, 
signed by the relevant company) can call it 

 
QUESTION 11: 
 
You are an application developer for Certkiller .com. You are developing a Windows-based 
application that stores user configuration information for the application. The information 
is stored in a file named Certkiller .config. 
You need to ensure that only users in the Administrators group can make changes to the 
configuration of the application. 
What should you do? 
 
A. Encrypt Certkiller .config by using the Administrators group's private key. 
Decrypt the file prior to reading its data from the application. 
B. Set a discretionary access control list (DACL) an Certkiller .config that grants the 
Administrators group Read permission and Write permission, but grants other users only Read 
permission. 
C. Add the following code segment to the assembly settings of the application. 
<Assembly: FileIOPermission(SecurityAction.RequestMinimum, _ 
Read:="C:\Program Files\MyApp\ Certkiller .config"=> 
Add the following code segment to the start of the Main() function in the application code 
Dim Wi As WindowsIdentity 
Wi = WindowsIdentity.GetCurrent() 
Dim Wp As New WindowsPrincipal(Wi) 
If Wp.IsInRole("BUILTIN\Administrators") Then 



070-330 

Actualtests.com - The Power of Knowing 
 

Dim Fip As New FileIOPermission _ 
(FileIOPermissionAccess.AllAccess," Certkiller .config") 
Fip.Assert() 
End If 
D. Add the following code segment at each point that Certkiller .config is opened. 
Dim Wi As WindowsIdentity 
Wi = WindowsIdentity.GetCurrent() 
 
Answer: B 
Explanation 
Security Descriptors 
Windows 2000 implements access control by allowing administrators or owners of objects to 
assign security descriptors to objects stored in Active Directory (or to other types of objects). A 
security descriptor is a set of information attached to an object (such as a file, printer, or service) 
that specifies the permissions granted to different groups (or users), as well as the security events 
to be audited. For example, for the file temp.dat, you might grant Read, Write, and Delete 
permissions to the Administrators group, but assign only Read and Write permissions to the 
Operators group. 
For Active Directory objects, in addition to controlling access to a specific object, you can also 
control access to a specific attribute of that object. For example, you can grant a user access to a 
subset of information, such as employees' names and phone numbers, but not grant access to the 
employees' home addresses. 
Each security descriptor for an object in Windows 2000 contains four security components: 
                                    Owner. By default, the owner is the 
                                    creator of the object, except for objects 
                                    created by an administrator, in which case 
                                    "Administrators" is the owner. 
                                      Discretionary Access Control List 
                                     (DACL). Often referred to as ACL, is a 
                                      list of specific groups, user accounts, and 
                                      computers that are allowed or denied 
                                      access to an object. To change a DACL, a 
                                       permission called WRITE_DAC is 
                                       required. 
                                        System Access Control List (SACL). As 
                                        explained in the introduction, the SACL 
                                        specifies which events are to be audited 
                                        for which user or group. Examples of 
                                        events you can audit are file access, 
                                        logon attempts, and system shutdowns. 
                                        To read or change the SACL, the 
                                        SeSecurityPrivilege is required. 
                                        Group (for POSIX). The Group 
                                         component is for POSIX compliance and 
                                        is associated with the "primary group" set 
                                        in individual user objects in User 



070-330 

Actualtests.com - The Power of Knowing 
 

                                        Manager. (POSIX is based on the UNIX 
                                        operating system, but it can be 
                                        implemented by other operating systems.) 
Each assignment of permissions to a group (or user) is known as a permission entry or access control entry 
(ACE). An ACE is an entry in an access control list (DACL or SACL). The entry contains a SID 
and a set of access rights. A process (running on behalf of a user) with the user's access token 
that has a matching security ID is either allowed access rights, denied rights, or allowed rights 
with auditing. The entire set of permission entries in a security descriptor is known as a 
permission set. 
FileIOPermission Class 
Controls the ability to access files and folders. This class cannot be inherited. 
For a list of all members of this type, see FileIOPermission Members. 
System.Object 
System.Security.CodeAccessPermission 
System.Security.Permissions.FileIOPermission 
<Serializable>NotInheritable Public Class FileIOPermission Inherits CodeAccessPermission 
Implements IUnrestrictedPermissionRemarksThis permission distinguishes between the 
following four types of file IO access provided by FileIOPermissionAccess: 
* Read: Read access to the contents of the file or access to information about the file, such as its 
length or last modification time. 
* Write: Write access to the contents of the file or access to change information about the file, 
such as its name. Also allows for deletion and overwriting. 
* Append: Ability to write to the end of a file only. No ability to read. 
* PathDiscovery: Access to the information in the path itself. This helps protect sensitive 
information in the path, such as user names, as well as information about the directory structure 
revealed in the path. This value does not grant access to files or folders represented by the path. 
All these permissions are independent, meaning that rights to one do not imply rights to another. 
For example, Write permission does not imply permission to Read or Append. If more than one 
permission is desired, they can be combined using a bitwise OR as shown in the code example 
that follows. file permission is defined in terms canonical absolutepaths;calls should aways 
be made with canonical file paths. 
FileIOPermission describes protected operations on files and folders. The File class helps 
provide secure access to files and folders. The security access check is performed when the 
handle to the file is created. By doing the check at creation time, the performance impact of the 
security check is minimized. Opening a file happens once, while reading and writing can happen 
multiple times. Once the file is opened, no further checks are done. If the object is passed to an 
untrusted caller, it can be misused. For example, file handles should not be stored in public 
global statics where code with less permission can access them. 
FileIOPermissionAccess specifies actions that can be performed on the file or folder. In 
addition, these actions can be combined using a bitwise OR to form complex instances. 
Access to a folder implies access to all the files it contains, as well as access to all the files and 
folders in its subfolders. For example, Read access to C:\folder1\ implies Read access to 
C:\folder1\file1.txt, C:\folder1\folder2\, C:\folder1\folder2\file2.txt, and so on. 
CAUTION Unrestricted FileIOPermission grants permission for all paths within a file system, 
including multiple pathnames that can be used to access a single given file. To Deny access to a 
file, you must Deny all possible paths to the file. For example, if \\server\share is mapped to the 



070-330 

Actualtests.com - The Power of Knowing 
 

network drive X, to Deny access to \\server\share\file, you must Deny\\server\share\file, X:\file 
and any other path that you can use to access the file. A better technique to deal with multiple 
paths is to use a combination of PermitOnly and Deny. In the above example you can 
PermitOnly\\server\share, then Deny\\server\share\file, eliminating alternate paths completely. 
For more information on this subject and the use of PermitOnly with Deny, see Canonicalization 
Problems Using Deny in the Deny topic. 
NotePaths of the form \\server\share\bogusfolder\..\file are converted into the canonical form 
\\server\share\file by the security system so you only need to Deny the canonical path, 
\\server\share\file, and do not need to account for the syntactical variations that can be used to 
specify the same path. 
Note Deny is most effective when used with the Windows NTFS file system. NTFS offers 
substantially more security than FAT32. For details on NTFS, see the Windows documentation. 
ExampleThe following examples illustrate code that uses FileIOPermission. After the following 
two lines of code, the object f represents permission to read all files on the client computer's 
local disks. 
Dim f As New FileIOPermission(PermissionState.None)f.AllLocalFiles = 
FileIOPermissionAccess.Read 

 
QUESTION 12: 
 
You are an application developer for Certkiller .com. You create an ASP.NET Web 
application that all authenticated network users will access. The authentication mode in the 
Web.config file is currently set to None. Due to recent security threats, the network 
administrator requires that all connections to the application's Web server use the network 
credentials of the authenticated user. 
You need to configure the application to use the network credentials of the authenticated 
user as HTTPContext.Current.User. 
Which action or actions should you perform? (Choose all that apply) 
 
A. Ask the network administrator to configure the IIS directory security to Anonymous 
authentication. 
B. Ask the network administrator to configure the IIS directory security to Integrated Windows 
authentication. 
C. Set the authentication mode in the Web.config file to Forms. 
D. Set the authentication mode in the Web.config file to Windows. 
E. Set the impersonation attribute of the identity element in the Web.config file to true. 
 
Answer: D, E 
Explanation 
Authentication is the process of obtaining identification credentials such as name and password 
from a user and validating those credentials against some authority. If the credentials are valid, 
the entity that submitted the credentials is considered an authenticated identity. Once an identity 
has been authenticated, the authorization process determines whether that identity has access to a 
given resource. 
Integrated Windows Authentication 
Integrated Windows authentication uses Windows logon credentials to authenticate users. Rather 



070-330 

Actualtests.com - The Power of Knowing 
 

than prompt a user for a user name and password and transmit them over HTTP, a browser asked 
to identify the user through integrated Windows authentication carries on a conversation with the 
Web server and identifies the user using that person's login identity on the client. 
ASP.NET implements authentication through authentication providers, the code modules that 
contain the code necessary to authenticate the requestor's credentials. ASP.NET supports the 
authentication providers described in the following table. 
  
ASP.NET authentication 
provider Description 

Forms authentication A system by which unauthenticated 
  requests are redirected to an HTML form 
  using HTTP client-side redirection. The 
  user provides credentials and submits the 
  form. If the application authenticates the 
  request, the system issues a cookie that 
  contains the credentials or a key for 
  reacquiring the identity. Subsequent 
  requests are issued with the cookie in the 
  requests are request headers; they are authenticated 
    
  and authorized by an ASP.NET event 
  handler using whatever validation method 
  the application developer specifies. 
Passport authentication Centralized authentication service 
  provided by Microsoft that offers a single 
  logon and core profile services for 
  member sites. 
Windows authentication ASP.NET uses Windows authentication in 
  conjunction with Microsoft Internet 
  Information Services (IIS) authentication. 
  Authentication is performed by IIS in one 
  of three ways: basic, digest, or Integrated 
  Windows Authentication. When IIS 
  authentication is complete, ASP.NET uses 
  the authenticated identity to authorize 
  access. 
    

To enable an authentication provider for an ASP.NET application, you only need to create an entry for the 
application configuration file as follows. 
// Web.config file<authentication mode= "[Windows|Forms|Passport|None]"/>The mode is set to 
one of the authentication modes: Windows, Forms, Passport, or None. The default is Windows. 
If the mode is None, ASP.NET does not apply any additional authentication to the request - this 



070-330 

Actualtests.com - The Power of Knowing 
 

can be useful when you want to implement a custom authentication scheme, or if you are solely 
using anonymous authentication and want the highest possible level of performance. 
The authentication mode cannot be set at a level below the application root directory. As is the 
case with other ASP.NET modules, subdirectories in the URL space inherit authentication 
modules unless explicitly overridden. 
The WindowsAuthenticationModule provider relies on Microsoft Internet Information Services 
(IIS) to provide authenticated users, using any of the mechanisms that IIS supports. If you want 
to implement site security with a minimum of ASP.NET coding, this is the provider 
configuration you should use. The provider module constructs a WindowsIdentity object. The 
default implementation constructs a WindowsPrincipal object and attaches it to the application 
context. The WindowsPrincipal object maps identities to Windows groups. 
If you use IIS authentication, the provider module uses the authenticated identity passed in from 
IIS. IIS authenticates the identity using basic, digest, or Integrated Windows authentication, or 
some combination of them. You can use impersonation and NTFS ACL permissions to restrict or 
allow access to protected resources. 
An important reason to use the WindowsAuthenticationModule provider is to implement an 
impersonation scheme that can use any of the authentication methods that might have already 
been performed by IIS before passing the request to the ASP.NET application. To do this, set the 
authentication mode to Windows, and confirm that the impersonate element is set to true, as 
shown in the following example: 
<authentication mode="Windows"/><identity impersonate="true"/>Please note that configuring 
an ASP.NET application has no effect on the IIS Directory Security settings. The systems are 
completely independent and are applied in sequence. In addition to selecting an authentication 
mode for an ASP.NET application, it is also important to configure IIS authentication 
appropriately. 
Next, you must set the NTFS ACLs to allow access only to the proper identities. If you want 
to enable impersonation for only a short time during request processing, you can do it by using 
an impersonation context and WindowsIdentity.Impersonate. 
First, set the impersonate element to false, and then set up a context using the 
WindowsIdentity.Impersonate method, as shown in the following example. 
Dim context As WindowsImpersonationContext = 
_WindowsIdentity.Impersonate(impersonateToken)' Perform some action.context.Undo()Notice 
that you can use context.Undo for identity reversion. 
As mentioned earlier, you can implement a custom Windows authorization scheme by using a 
WindowsAuthentication_OnAuthenticate event handler to create a WindowsPrincipal or a 
GenericPrincipal object from a WindowsIdentity object. You can then use one of the new objects 
to implement your own custom authentication scheme. The WindowsPrincipal object maps 
identities to Windows groups. The default implementation constructs a WindowsPrincipal object 
and attaches it to the application context. 

 
QUESTION 13: 
 
You are an application developer for Certkiller .com. You develop a Windows Forms 
application. You want your application to use a class library that was developed by another 
developer. You run the Permissions View tool on the class library and receive the following 



070-330 

Actualtests.com - The Power of Knowing 
 

output. 
Microsoft (R) .NET Framework Permission Request Viewer. Version 
1.1.4322.573 
Copyright (C) Microsoft Corporation 1998-2002. All rights 
reserved. 
minimal permission set: 
<PermissionSet class="System.Security.PermissionSet" 
version="1"> 
<IPermission 
class="System.Security.Permissions.FileIOPermission, mscorlib, 
Version=1.05000.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089" 
version="1" 
Write="C:\SecureFile.txt"/> 
<IPermission 
class="System.Security.Permissions.ReflectionPermission, 
mscorlib, 
Version=1.0.5000.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089" 
version="1" 
Flags="ReflectionEmit"/> 
IPermission 
class="System.Security.Permission.SecurityPermission, mscorlib, 
Version=1.0.5000.0, Culture=netrual, 
PublicKeyToken=b77a5c561934e089" 
version="1" 
Flags="SerializationFormatter"/> 
</PermissionSet> 
optional permission set: 
<PermissionSet class="System.Security.PermissionSet" 
version="1" 
Unrestricted="true"/> 
refused permission set: 
Not specified 
You need to add the correct attributes to the Windows Forms application code before the 
call to the class library. 
Which code segment should you use? 
 
A. <Assembly: ReflectionPermission(SecurityAction.RequestMinimum, 
_ 
ReflectionEmit:=False), _ 
Assembly: SecurityPermission(SecurityAction.RequestOptional, _ 
SerializationFormatter:=False), _ 
Assembly: 
FileIOPermissionAttribute(SecurityAction.RequestRefuse, _ 
Write:="C:\SecureFile.txt"), _ 



070-330 

Actualtests.com - The Power of Knowing 
 

Assembly: PermissionSetAttribute(SecurityAction.RequestOptinal, 
Unrestricted:=True)> 
B. <Assembly: ReflectionPermission(SecurityAction.RequestOptional, 
_ 
ReflectionEmit:=True), _ 
Assembly: SecurityPermission(SecurityAction.RequestMinimum, _ 
SerializationFormatter:=True), _ 
Assembly: 
FileIOPermissionAttribute(SecurityAction.RequestOptional, _ 
Write:="C:\SecureFile.txt"), _ 
Assembly: PermissionSetAttribute(SecurityAction.RequestMinimum, 
Unrestricted:=True)> 
C. <Assembly: ReflectionPermission(SecurityAction.RequestMinimum, 
_ 
ReflectionEmit:=False), _ 
Assembly: SecurityPermission(SecurityAction.RequestMinimum, _ 
SerializationFormatter:=False), _ 
Assembly: 
FileIOPermissionAttribute(SeurityAction.RequestOptional, _ 
Write:="C:\SecureFile.txt"), _ 
Assembly: PermissionSetAttribute(SecurityAction.RequestMinimum, 
Unrestricted:=True)> 
D. <Assembly: ReflectionPermission(SecurityAction.RequestMinimum, 
_ 
ReflectionEmit:=True), _ 
Assembly: SecurityPermission(SecurityAction.RequestMinimum, _ 
SerializationFormatter:=True), _ 
Assembly: 
FileIOPermissionAttribute(SecurityAction.RequestMinimum, _ 
 
Answer: D 
Explanation 
The SDK provides a tool called PERMVIEW that is useful for verifying that your permission 
requests are correct. Running PERMVIEW on a compiled assembly will read the permission 
requests out of the assembly's manifest and display them as shown below. 
C:\>permview filemover.exe 
Microsoft (R) .NET Framework Permission Request Viewer. Version 1.0.XXXX.0 
Copyright (C) Microsoft Corp. 1998-2001 
minimal permission set: 
<PermissionSet class="System.Security.PermissionSet" 
version="1"> 
<IPermission class="System.Security.Permissions.FileIOPermission" 
version="1" 
Unrestricted="true"/> 
</PermissionSet> 
optional permission set: 



070-330 

Actualtests.com - The Power of Knowing 
 

<PermissionSet class="System.Security.PermissionSet" 
version="1" 
Unrestricted="true"/> 
refused permission set: 
Not specified 
The Permissions View tool is used to view the minimal, optional, and refused permission sets 
requested by an assembly. Optionally, you can use Permview.exe to view all declarative security 
used by an assembly. 
permview [/output filename] [/decl] manifestfile 
  
  Argument Description 
manifestfile   The file that contains the assembly's 
    manifest. The manifest can be either a 
    standalone file or it can be incorporated in 
    a portable executable (PE) file. The 
    extension for this file will usually be .exe 
    or .dll, but it could also be .scr, or .ocx. 
  Option Description 
/decl   Displays all declarative security at the 
    assembly, class, and method level for the 
    assembly specified by manifestfile. This 
    includes permission requests as well as 
    demands, asserts, and all other security 
    actions that can be applied declaratively. It 
    does not refer to other assemblies linked to 
    the specified assembly. 
/h[elp]   Displays command syntax and options for 
    the tool. 
/output filename Writes the output to the specified file. The 
    default is to display the output to the 
    console. 
/?   Displays command syntax and options for 
    the tool. 
     

RemarksDevelopers can use Permview.exe to verify that they have applied permission requests correctly to 
their code. Additionally, users can run Permview.exe to determine the permissions an assembly 
requires to execute. For example, if you run a managed executable and get the error, 
"System.Security.Policy.PolicyException: Failed to acquire required permissions," you can use 
Permview.exe to determine the permissions the code in your executable must receive before it 
will execute. 
Reflection emit is a runtime feature that allows code to create dynamic assemblies, modules, and 
types. You can dynamically create instances of these types to use, or you can use reflection emit 
to generate an assembly and persist it to disk as an .exe file or DLL. 



070-330 

Actualtests.com - The Power of Knowing 
 

ReflectionPermissionAttribute Class 
Allows security actions for ReflectionPermission to be applied to code using declarative 
security. This class cannot be inherited. 
For a list of all members of this type, see ReflectionPermissionAttribute Members. 
System.Object 
System.Attribute 
System.Security.Permissions.SecurityAttribute 
System.Security.Permissions.CodeAccessSecurityAttribute 
System.Security.Permissions.ReflectionPermissionAttribute 
<AttributeUsage(AttributeTargets.Assembly Or AttributeTargets.Class _ Or 
AttributeTargets.Struct Or AttributeTargets.Constructor Or _ 
AttributeTargets.Method)><Serializable>NotInheritable Public Class 
ReflectionPermissionAttribute Inherits CodeAccessSecurityAttributeRemarksThe scope of 
the declaration that is allowed depends on the SecurityAction that is used. 
The security information declared by a security attribute is stored in the metadata of the attribute 
target and is accessed by the system at run time. Security attributes are used only for declarative 
security. For imperative security, use the corresponding permission class. 
ExampleThe following example of a declarative attribute shows the correct way to request 
ReflectionPermission for ReflectionEmit and states that you must have at least this permission to 
run your code. 
<Assembly: ReflectionPermissionAttribute(SecurityAction.RequestMinimum, _ReflectionEmit 
:= True)>'In Visual Basic, you must specify that you are using the assembly scope when making 
a request.ReflectionPermission at link time. Demands are typically made in managed libraries 
(DLLs) to help protect methods or classes from potentially harmful code. 
<ReflectionPermissionAttribute(SecurityAction.Demand, _Unrestricted := True)> Public Class 
SampleClassSince you do not necessarily have control over what permissions are assigned to the 
code you write, the common language runtime provides a mechanism for requesting the 
permissions that you feel your code must have in order to run properly. If the code is not granted 
the required permissions, it will not run. And, because permission requests are stored in an 
assembly's manifest, the end user can run a tool to determine what permissions have been 
requested by the assembly author and then take the appropriate steps to grant those permissions 
if they need the code to run on their machine. 
Three types of permission requests are supported: 
RequestMinimum: The permissions the code must have to run properly. If these permissions 
cannot be granted, the code will not be executed. 
RequestOptional: The permissions that should be granted if allowed by policy. The runtime 
will attempt to execute code even if permissions it requests as optional have not been granted. 
RequestRefuse: The permissions that code should never be granted. Code will not receive these 
permissions, even if they would normally be granted to it. This is an extra precaution you can 
take to prevent your from code being misused. 
Permission requests can only be made in a declarative fashion and must always be at the 
assembly level (the assembly is the unit to which permissions are granted by the security 
system). The following code is a request stating that an assembly must have unrestricted access 
to the file system in order to function. 
[assembly:FileIOPermission(SecurityAction.RequestMinimum, Unrestricted=true)] 
<Assembly: FileIOPermission(SecurityAction.RequestMinimum, Unrestricted := True)> 



070-330 

Actualtests.com - The Power of Knowing 
 

Public Class FileMover 
'something interesting 
End Class 
Several requests of the same type can be made, in which case the final permission set requested 
is the aggregate of all requests of that type. In the example below RequestMinimum is used 
twice with different permissions to state that the assembly must have the ability to use Reflection 
Emit and perform serialization in order for it to function. 
[assembly:ReflectionPermission(SecurityAction.RequestMinimum, ReflectionEmit=true)] 
[assembly:SecurityPermission(SecurityAction.RequestMinimum, SerializationFormatter=true)] 
<Assembly: ReflectionPermission(SecurityAction.RequestMinimum, ReflectionEmit := True)> 
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, SerializationFormatter := 
True)> 
Public Class CodeGenerator 
'something interesting 
End Class 
The same permission can also appear in requests of different types. For instance, the example 
program at the bottom of this page uses an EnvironmentPermission in each of its three requests 
(Minimum, Optional, and Refuse). This is useful when a permission encompasses a number of 
operations and you want to ensure that your assembly has the ability to perform some of those 
operations while being prevented from performing others. It is important to note that any 
permission you refuse using RequestRefuse will not be granted to your assembly even if you 
request that same permission using RequestMinimum. 
In addition to requesting individual permissions, entire sets of permissions can be requested in a 
compact fashion. The example below shows two requests: one stating that an assembly must 
have unrestricted access to the file system in order to function and one stating that it will take 
any and all other permissions that the security system is willing to grant it. 
[assembly:FileIOPermission(SecurityAction.RequestMinimum, Unrestricted=true)] 
[assembly:PermissionSet(SecurityAction.RequestOptional, Name="FullTrust")] 
<Assembly: FileIOPermission(SecurityAction.RequestMinimum, Unrestricted := True)> 
<Assembly: PermissionSet(SecurityAction.RequestOptional, Name := "FullTrust")> 
Public Class FileMover 
'something interesting 
End Class 
The previous example shows how to request a permission set by name, but it is also possible to 
use a custom permission set representing the exact permissions you want. 

 
QUESTION 14: 
 
You are an application developer for Certkiller .com. Users who are temporary employees 
are members of a group named TemporaryEmployees. You develop a serviced component 
named Certkiller Component. Certkiller Component is part of a COM+ application named 
MyApplication. Certkiller Component is secured by using the SecurityRole attribute for the 
Employees role. 
You need to ensure that members of the TemporaryEmployees group are assigned to the 
Employees role. You decide to add the TemporaryEmployees group to the existing 



070-330 

Actualtests.com - The Power of Knowing 
 

Employees role. 
Which tool should you use? 
 
A. The code Access Security Policy tool. 
B. The Permission View tool. 
C. The Component Services tool. 
D. The Secutil tool. 
E. The Microsoft .NET Framework Configuration tool. 
 
Answer: C 
Explanation 
The Component Services tool is an administrative console for managing components registered 
to take advantage of component services. This tool can be found under Administrative Tools, 
either from the Programs Menu or the Control Panel. Components are grouped into COM+ 
Applications. New applications can be created by right-clicking the COM+ Applications folder 
andselecting New->Application. Components can be added to an Application by either dragging 
and dropping the dll, or by right-clicking the Components folder under the application and 
selectingNew->Component. This will launch the Component Install Wizard. The following 
screenshot shows the Component Services management console from a Windows .NET Server 
machine. 

 
Defining Roles for an Application 
You determine a security policy for an application by defining the security privileges that it 
requires. To do this you declare a symbolic level of privilege as a role-that is, define the role for 
the application-and then assign the role to specific resources within the application. This design 
is fulfilled when the application is deployed and system administrators populate the role with 
actual users and user groups. For greater detail, see Role-Based Security. 
To add a role to an application 
1. In the console tree of the Component Services administrative tool, locate the COM+ 
application to which you want to add the role. Expand the tree to view the folders for the 
application. 
2. Right-click the Roles folder for the application, point to New, and then click Role. 
3. In the Role dialog box, type the name of the new role in the box provided. 
4. Click OK. 



070-330 

Actualtests.com - The Power of Knowing 
 

NoteAfter adding roles to the application, you must be sure to assign the roles to the appropriate 
components, interfaces, and methods. Otherwise, if role-based security has been chosen and 
enabled and if roles have been added but not assigned, all calls to the application will fail. 
Assigning Roles to Components, Interfaces, or Methods 
You can explicitly assign a role to any item within a COM+ application that is visible through 
the Component Services administrative tool. Doing so ensures that any users that are members of 
the role will be permitted access to that item and any other items that it contains. For example, if 
you assign the role "Readers" to a component, any member of "Readers" is allowed access to 
that component and any interfaces and methods it exposes. "Readers" will show up as an 
Inherited role for any of those interfaces and methods. 
A method is accessible to callers only if you assign a role to it, either by explicitly assigning the 
role directly to the method or by assigning a role to the method's interface or the method's 
component, in which case the role will be inherited by the method. If no role is assigned and if 
access checks are enabled, all calls to the method will fail. 
Before you can assign a role, you must define it for the application. All roles defined for the 
application will appear in the Roles explicitly set for selected item(s) window on the Security tab 
for any components, methods, and interfaces within the application. 
To assign roles to a component, method, or interface 
1. In the console tree of the Component Services administrative tool, locate the COM+ 
application for which the role has been defined. Expand the tree to view the application's 
components, interfaces, or methods, depending on what you are assigning the role to. 
2. Right-click the item to which you want to assign the role, and then click Properties. 
3. In the properties dialog box, click the Security tab. 
4. In the Roles explicitly set for selected item(s) box, select the roles that you want to assign to 
the item. 
5. Click OK. 
Any roles that you have explicitly set for an item will be inherited by any lower-level items it 
contains and will show up in the Roles inherited by selected item(s) window for those items. 

 
QUESTION 15: 
 
You are an application developer for Certkiller .com. You create a Web Forms application 
to track employee expense report information. Information is entered by each user and 
stored in a Microsoft SQL Server database. The application uses Integrated Windows 
authentication with impersonation enabled to communicate with the database. All users 
are assigned to the DataReader role and the DataWriter role in SQL Server. 
The employee expense report form contains client-side validation scripts and additional 
server controls. This form is ViewState enabled. All employee expense reports must be 
approved by the accounting department by using a separate form in the application before 
payment is made. 
You need to unit test the security of the application. 
What should you do? 
 
A. Copy the ViewState information to a text file and attempt to decrypt it. 
B. Test the application from the hosting computer and from the client computers. 
C. Create your own page that mimics the approved page and submit that page to the server. 



070-330 

Actualtests.com - The Power of Knowing 
 

D. Sign on as a user in the accounting department and verify that you can approve expense 
reports. 
 
Answer: D 
Explanation 
Since we are performing a security test the goal is to attempt to bypass the security mechanisms 
in place. Making a submission from an avenue other than what is expected / abnormal is a 
starting point. 
ViewState Maintains the UI State of a Page. The Web is stateless, and so are ASP.NET Pages. 
They are instantiated, executed, rendered, and disposed on every round trip to the server. As a 
Web developer, you can add statefulness using well-known techniques like storing state on the 
server in Session state or by posting a page back to itself. 
The primary goal of unit testing is to take the smallest piece of testable software in the 
application, isolate it from the remainder of the code, and determine whether it behaves exactly 
as you expect. Each unit is tested separately before integrating them into modules to test the 
interfaces between modules. Unit testing has proven its value in that a large percentage of 
defects are identified during its use. 
The most common approach to unit testing requires drivers and stubs to be written. The driver 
simulates a calling unit and the stub simulates a called unit. The investment of developer time in 
this activity sometimes results in demoting unit testing to a lower level of priority and that is 
almost always a mistake. Even though the drivers and stubs cost time and money, unit testing 
provides some undeniable advantages. It allows for automation of the testing process, reduces 
difficulties of discovering errors contained in more complex pieces of the application, and test 
coverage is often enhanced because attention is given to each unit. 
For example, if you have two units and decide it would be more cost effective to glue them 
together and initially test them as an integrated unit, an error could occur in a variety of places: 
* Is the error due to a defect in unit 1? 
* Is the error due to a defect in unit 2? 
* Is the error due to defects in both units? 
* Is the error due to a defect in the interface between the units? 
* Is the error due to a defect in the test? 
Finding the error (or errors) in the integrated module is much more complicated than first 
isolating the units, testing each, then integrating them and testing the whole. 
Drivers and stubs can be reused so the constant changes that occur during the development cycle 
can be retested frequently without writing large amounts of additional test code. In effect, this 
reduces the cost of writing the drivers and stubs on a per-use basis and the cost of retesting is 
better controlled. 
Resources* NUnit Web site 
* NUnit Addin for Visual Studio.NET 
* NUnitASP Web site 
* TestDriven.com Web site 
* XP Programming Web site 
* Test Driven Development Group page on Yahoo 
* Test Driven Development: By Example by Kent Beck-Book page on Amazon.com 
* Refactoring: Improving the Design of Existing Code by Martin Fowler-Book page on 
Amazon.com 



070-330 

Actualtests.com - The Power of Knowing 
 

* .TEST from ParaSoft 
* Unit Testing Database Code by Richard Dallaway 
* Unit Testing Database Code on the DevDaily Web site 

 
QUESTION 16: 
 
You are an application developer for Certkiller .com. You are developing an application 
that will be used by members of three domain user groups in your company. The user 
groups are named Certkiller Sales, Certkiller Marketing, and AccountManagement. Each of 
the three user groups will have different permission within the application. 
You log on to your development computer by using a domain user account that is a 
member of only the Domain Users and the Developers domain user groups. On your 
development computer, you user account is a member of only the local Users group. 
When you finish developing the application, you need to ensure that the application runs 
correctly before you send the application to the company's internal software testing 
department. 
How should you test the application? 
 
A. Select one user from each of the three user groups that will run the application. 
Deploy the application to the client computer of each of these three users. 
Test the application on each of the computers. 
B. Deploy the application to a client computer. 
Ask a domain administrator to place the computer's domain account into all three of the user 
groups that will run the application. 
Test the application on the client computer. 
C. Ask a domain administrator to create a domain user account for testing. 
Place the account in each of the three user groups that will run the application. 
Test the application, logging on to your computer by using the test domain user account. 
D. Ask a domain administrator to create three domain user accounts for testing. 
Place one account in each of the three user groups that will run the application. 
Test the application three times, logging on to your computer by using a different test domain 
user account for each test. 
 
Answer: D 
Explanation 
Developers are not normally part of the user groups that will be using custom application they 
design. So their accounts would not be part of the domain user group(s) with access. 
Applications that have not been fully tested and approved for release need to be tested in a 
non-production environment. 
There is no need to test from three different computers, users groups/user accounts have access 
to the application not computer accounts. 
Since the groups are domain group, which have different permissions, you cannot use one 
account to test all three. 
All three groups' permissions must be tested and each group will hold specific users. 
The permission rule of AGGDLP (Accounts into Global Groups into Domain Local Groups 
which get permissions) must be adhered to. 



070-330 

Actualtests.com - The Power of Knowing 
 

Since we need to test the permission and application functionality for the three groups, we need 
three accounts, one for each group. 

 
QUESTION 17: 
 
You are an application developer for Certkiller .com. You are developing an application 
that will be used both by company users and by contractors. Contractors will install the 
application on their own portable computers. A written company policy prohibits 
contractors from easily accessing or reviewing the source code of company applications. 
The file servers that contain the source code for the application are configured so that only 
company software developers have access. 
You need to ensure that the contractors cannot easily access the application source code. 
What should you do? 
 
A. Run Dotfactor Community Edition on each of the application assemblies. 
B. Apply a strong name to each of the application assemblies. 
C. Run the Code Access Security Policy tool for each of the application assemblies before 
distributing the application. 
D. Use Encrypting File System (EFS) to encrypt the compiled application assemblies. 
 
Answer: A 
Explanation 
Dotfuscator provides all "normal" obfuscation methodologies in addition to many unique 
ones. No obfuscation technology is 100 percent secure. As with other obfuscators, 
not claim nor deliver 100 percent protection. 
Dotfuscator will rename all possible methods. Dotfuscator can rename all public, private, 
etc. methods that do not override a method from a non-included class. 
Renaming is done in such a way as to minimize the string heap, which helps to reduce 
executable size. 
helps protect your program 
against reverse engineering while making it smaller and more efficient. Dotfuscator has a 
GUI and command line interface. Dotfuscator Community Edition is accessible directly 
from the tools menu of Visual Studio.NET 2003. 

 
QUESTION 18: 
 
You are an application developer for Certkiller .com. Each client computer in Certkiller  
runs either Microsoft Windows XP Professional or Windows 98. You are developing an 
application that will be used by all users in Certkiller . 
Users log on to their client computers by using a domain user account that is a member of 
the local Power Users group and the user's computer. You log on to your Windows XP 
Professional computer by using a domain user account that is a member of the local 
Administrators group and Power Users group on your computer. 
When testing your application, you need to ensure that your tests accurately reflect the 
production environment in which the application will run. 
How should you test the application? 



070-330 

Actualtests.com - The Power of Knowing 
 

 
A. Ask a domain administrator to temporarily remove your domain user account from the local 
Administrators group on your computer while you are testing the application. 
B. Test the application on your computer. 
When testing, log on to the computer by using a domain user account that is a member of only 
the local Power Users group on your computer. 
C. Deploy the application to a Windows XP Professional computer and a Windows 98 computer. 
Log on to each computer by using a domain user account that is a member of only the local 
Power Users group. 
D. Compile the assemblies of the application from the command line by running the runas 
command and specifying a domain user account that is a member of only the local Power Users 
group on your computer. 
 
Answer: C 
Explanation 
Ito appropriately test your application, it needs to be tested in an environment that mimics the 
production environment. 
In this scenario only Windows XP has a local Power Users group, but Windows 98 systems must 
be tested since they are deployed in the environment. 

 
QUESTION 19: 
 
You are an application developer for Certkiller .com. You develop an ASP.NET Web 
application that writes to an event log named EventLog1. All managers in Certkiller will 
run this application. During a test on a manager's client computer, the application fails in 
the following code segment. (Line numbers are includes for reference only.) 
1. Dim EventLog1 As New EventLog 
2. If Not EventLog.SourceExists(" Certkiller WebApp") Then 
3. EventLog.CreateEventSource(" Certkiller WebApp", "Application") 
4. End If 
5. EventLog1.Source = " Certkiller WebApp" 
6. EventLog1.WriteEntry("The event occurred.") 
You need to ensure that event data is written to EventLog1. You want to achieve this goal 
without granting unnecessary permissions. 
What should you do? 
 
A. Insert the following code into the application. 
Dim eventLogDir As String 
eventLogDir = "C:\%windir"\system32\config\AppEvent.Evt" 
Dim FilePermission As _ 
New FileOPermission(FileIOPermissionAccess.AllAcces, 
eventLogDir) 
FilePermission.Assert() 
B. Replace line 6 of the code segment with the following line of code. 
EventLog1.WriteEntry("The event occurred","EventLogWriter") 
C. Grant the managers the Full Control permission for the event log file. 



070-330 

Actualtests.com - The Power of Knowing 
 

D. Add the aspnet_wp account to the Administrators group. 
E. Create the event log source in the installer class of the application. 
 
Answer: E 
Explanation 
Writing Entries to Event Logs When you write an entry to an event log, you specify the message you want to 
write to the log as a string. A message should contain all information needed to interpret what caused the 
problem and what to do to correct the problem. The most direct way is to register an event source with the log 
to which you want to write, then instantiate a component and set its Source property to that log, and finally call 
WriteEntry. If you do this, you do not have to set the Log property for the component already been registered. 
For more information on registering a source, see Adding Your Application as a Source of Event Log Entries. 
The other way to approach this process is to instantiate an EventLog component, set its Source, Machine, and 
Log properties, and call the WriteEntry method. In this case, the WriteEntry method would determine whether 
the source already existed and register it on the fly if it did not. The following conditions must be met in order 
to successfully write a log entry: * The source must be registered with the desired log. NoteYou must set the 
Source property on your EventLog component instance before you can write entries to a log. When your 
component writes an entry, the system automatically checks to see if the source you specified is registered with 
the event log to which the component is writing, and calls CreateEventSource if needed. * The message you 
specify cannot be more than 16K in length. * Your application must have write access to the log to which it is 
attempting to write. For more information, see Security Ramifications of Event Logs. You can specify several 
parameters when you write an entry, including the type of entry you're making, an ID that identifies the event, a 
category, and any binary data you want to append to the entry. For more information on the properties 
associated with an entry, see EventLog Members. To write an event log entry 1. Instantiate an EventLog 
component. For more information, see Creating EventLog Component Instances. 2. Use the 
EventLog.CreateEventSource method to register an event source with the log to which you want to write an 
entry, using a unique string for the source string. Set the Source property for the component to the source you 
registered. For more information, see Configuring EventLog Component Instances. Call the WriteEntry method 
to specify the entry to be written to the log. 3. If Not EventLog.SourceExists("MyApp1") Then4. 
EventLog.CreateEventSource("MyApp1", "Application")5. End If6. EventLog1.Source = "MyApp1"7. 
EventLog1.WriteEntry("This is a simple event log entry")  

 
QUESTION 20: 
 
You are an application developer for Certkiller .com. You are developing an application 
that stores and retrieves data in a Microsoft SQL Server database. The application accepts 
input from the user and stores the input in a variable named strInput. The input is to be 
saved in a SQL Server nchar column that has a length of 10. The application calls a stored 
procedure to save the input, and the stored procedure stores the input in a parameter 
named @ Certkiller Input. 
You need to ensure that input by the user can be stored in the SQL Server column without 
causing an exception. Your solution must ensure that either the entire user input is saved, 
or none of the user input is saved. 
Which two actions should you perform? (Each correct answer presents part of the solution. 
Choose two) 
 
A. In the application, reject the input if the strInput.Length value is greater than 10. 



070-330 

Actualtests.com - The Power of Knowing 
 

B. In the application, pass only strInput.Chars(9) to the stored procedure. 
C. In the application, use a regular expression to remove all non-alphanumeric characters. 
D. In the stored procedure, reject the input if the length of @ Certkiller Input is greater than 10. 
E. In the stored procedure, save only the result of LEFT(" Certkiller Input,10) to the database 
column. 
F. In the stored procedure, save the result of REPLACE(@ Certkiller Input,"@-]","") to the 
database column. 
 
Answer: A, C 
Explanation 
It is best for the approach that you must validate and cleanse data before it is used and/or store. 
Rule number two is: data must be validated as it crosses the boundary between untrusted and 
trusted environments. By definition, trusted data is data you or an entity you explicitly trust has 
complete control over  untrusted data. refers to everythings else.in short, any data submitted by a 
user is initially untrusted data.? 
When it comes to SQL statements, all dynamic SQL is bad, and paramterized store procedures 
must be used. Dynamic SQL can be easily compromised and used for SQL injection attacks. 
Validate SQL Input and Use Parameter ObjectsValidate all the input data that you use in SQL 
commands. Do not permit the client to retrieve more data than it should. Also, do not trust user 
input, and do not permit the client to perform operations that it should not perform. Doing so 
helps to lower the risk of SQL injection. By rejecting invalid data early before you issue a 
command that has the invalid data, you can improve performance by eliminating unnecessary 
database requests. 
Use Parameter objects when you build database commands. When you use Parameter objects, 
each parameter is automatically type checked. Checking the type is another effective 
countermeasure you can use to help prevent SQL injection. Ideally, use Parameter objects in 
conjunction with stored procedures to improve performance. For more information about using 
parameters, see "Parameters" later in this chapter. 
Using Parameters with Stored ProceduresThe following code sample illustrates how to use the 
Parameters collection. 
SqlDataAdapter myCommand = new SqlDataAdapter("AuthorLogin", 
conn; my command.selectCommand.Command type= 
Command type.storedprocedure:sqlparameter parm= 
myCommand.SelectCommand.Parameters.Add("@au_id"sqlDb type .varchar,11); 
parm.value =login.text;in the code sample,the 
@au_id parameter is treated as a literal value 
and not as code that can be run. Also, the parameter is checked for type and length. In the code 
fragment, the input value cannot be longer than 11 characters. If the data does not 
conform to the type or length that is defined by the parameter, an exception is generated. 
Using stored procedures alone does not necessarily prevent SQL injection. The important thing 
to do is use parameters with stored procedures. If you do not use parameters, your stored 
procedures may be susceptible to SQL injection if the stored procedures use unfiltered input. For 
example, the following code fragment is susceptible to SQL injection. 
SqlDataAdapter myCommand = new SqlDataAdapter("LoginStoredProcedure '" + Login.Text + 
""",conn);Using parameters with dynamic SQL 
If you cannot use stored procedures, you can still 



070-330 

Actualtests.com - The Power of Knowing 
 

use parameters with dynamic SQL as shown in the following code fragment. 
SqlDataAdapter myCommand = new SqlDataAdapter("SELECT au_lname, au_fname FROM 
Authors  WHERE au_id@au _id ",conn);sql parameters parm= 
my command.select command.parameters.ADD("@au_id",sql type varchar,11;parm .value 
=login.text;ARetrive only the columns Rows you need Reduce unnecessary 
processing and network traffic by retrieving only the columns and the rows you need. Do not use 
the SELECT * query. This is poor practice because you might not know the schema, or it might 
change. It is easy to retrieve more data than you expect. Consider a scenario where you want 
four columns, but you perform an operation by using the SELECT * query on a 400-column 
table. In that scenario, you receive many more results than you expect. Instead, use WHERE 
clauses to filter the rows. 
NCHAR - Fixed-length Unicode data with a maximum length of 4,000 characters 
Returns the Unicode character with the given integer code, as defined by the Unicode standard. 
SyntaxNCHAR ( integer_expression ) 
Argumentsinteger_expression 
Is a positive whole number from 0 through 65535. If a value outside this range is specified, 
NULL is returned. 
Return Typesnchar(1) 

 
QUESTION 21: 
 
You are an application developer for Certkiller .com. You develop a Windows Forms 
application that connects to a local Microsoft SQL Server database by using the Microsoft 
.NET Framework Data Provider for SQL Server. The application currently connects to the 
database by using an account that is a member of the System Administrator role in SQL 
Server. 
You need to ensure that the application can connect to the database by using the user 
account of the interactive user without providing additional permissions. 
What should you do? 
 
A. Modify the application to activate a SQL Server application role. 
B. Modify the application to use SQL Server integrated security. 
C. Modify the application to send a security token that contains the authentication information in 
a Kerberos ticket. 
D. Modify the application to use a COM+ security roles. 
 
Answer: B 
Explanation 
SQL Server provides three different security modes for validating logon information. 
  
Security Mode Description 
Standard Security The SQL Server user ID and password 
  must be provided by the application. No 
  attempt is made to use Windows NT client 
  identification. SQL Servers prior to 
  version 4.2 use this option exclusively. 



070-330 

Actualtests.com - The Power of Knowing 
 

Windows NT Integrated 
Security The SQL Server user ID is always taken 

  from the Windows NT domain user ID 
  and password. 
Mixed Security Unless the client provides a user ID and 
  password, the SQL Server user ID is taken 
  from the Windows NT domain user ID 
  and password. 
    

Standard SecurityStandard security is the default installation option for SQL Server. It provides 
the simplest security model because security exists independently of the Windows NT domain 
model. You control the level of access a user has to the database and its objects by setting 
security options within SQL Server itself. 
Standard security means the SQL Server uses its own validation process for checking all logon 
accounts. With standard security, each user provides an additional valid SQL Server logon ID 
and password. Each SQL Server logon specifies the allowed access to each database and its 
objects (tables, views, stored procedures, and rules). The logon accounts are considered valid if 
they appear in the encrypted syslogins table. Authentication consists of comparing the provided 
user name and password against similar information maintained in the SQL Server database. 
This is the easiest security model to integrate with IIS. 
You must use standard security if you are not using multi-protocol or Named Pipes. Standard 
security works for all network configurations. With standard security, SQL Server does not 
consider the domain the network logon accounts are using, and also ignores the Windows NT 
user name and password scheme. 
Standard security is the best choice if your application uses Internet Information Server. An 
important part of this configuration is whether or not an authenticated protocol will be used. 
Windows NT Integrated SecurityWith integrated security, SQL Server leverages Windows NT 
authentication to validate SQL Server logon accounts. This allows the user to bypass the 
standard SQL Server logon process. With this approach, a network user can access a SQL Server 
database without supplying a separate logon identification or password because SQL Server 
obtains the user and password information from the Windows NT network security process. 
Integrated security works for all trusted connections and requires either Named Pipes or 
Multi-Protocol (with Named Pipes). Trusted connections can be from other Windows NT, 
Windows 95, or Windows for Workgroups workstations, and also from Microsoft LAN Manager 
running under either MS-DOS or Microsoft Windows clients. 
SQL Server applications with integrated security benefit from all of the Windows NT security 
features. This includes domain-wide user accounts, encrypted passwords, password aging, logon 
auditing, and general user administration. Integrated security requires working closely with the 
network administrator to grant the necessary access permissions according to your application's 
security model. 
NoteIf your application uses Internet Information Server, you probably will not use SQL Server 
integrated security. 
You can implement integrated security with SQL Server by creating several Windows NT 
security groups and granting each group the necessary data access rights. For example, you 
would grant the SystemUsers group permission to perform SELECT, UPDATE, INSERT, and 



070-330 

Actualtests.com - The Power of Knowing 
 

DELETE using normal application processes. Similarly, you would grant the SystemAdmin 
group full SQL Server administrator rights and permissions. 
NoteRegardless of the SQL Server's logon security mode, ODBC and DB-Library client 
applications can be configured to always request a trusted connection from the server. The 
benefit is that with a correctly configured Windows NT account the SQL Executive can connect 
to remote servers. 
Mixed SecurityThe mixed security mode allows validation by using either standard or integrated 
security modes. With mixed security mode, SQL Server uses integrated security for all trusted 
connections. For example, for a connection to a trusted ODBC source, authentication occurs via 
the Windows NT authentication process. If the integrated mode authentication fails, standard 
security mode is used requiring the entry of valid SQL Server logon information 
Database Security 
One of the most common scenarios for a distributed application involves reading and writing 
data on a remote database. The dilemma that arises is how to do so securely while maintaining 
application scalability. Where you choose to manage security in your application will greatly 
impact, either negatively or positively, the scalability of your application. 
To achieve scalability using database connection pooling foregoes having the database manage 
security. This is because database connection pooling requires the connection string be identical 
to pool connections. Therefore, you must manage security elsewhere. If you must track database 
operations on per user basis, consider adding a parameter for user identity to each operation and 
manually log user actions in the database. 
Following the advice above, another issue is how to store the database connection string, which 
typically contains security credentials, so multiple users can access it without compromising 
security. Most sample applications demonstrate storing the connection string in the Web.config 
or global.asax files. However, because these files are plain text files that have limited security, it 
is not the best location for storing this information. Should an intruder compromise your Web 
server's security, these files would be easily accessible. Here are just a few alternatives: 
* If using the Web.config file, store the connection string encrypted and then decrypt the 
connection string in your application code when needed. 
* Build a COM+ application using the ServicedComponent Class and store the connection string 
in the construct string for that component. 
When storing sensitive information in the constructor string, you should verify the following: 
* Only the appropriate users/groups belong to the Reader role of the System Package. However, 
you must carefully manage COM+ to prevent it from being unable to read its own configuration. 
* You have controlled and audited access to the %windows%\Registration folder, where the 
COM+ configuration database (RegDB) stores its files. 
For more information, see ServicedComponent Class. 
* Use integrated security to make a trusted connection with SQL Server. This makes it possible 
for you to use a connection string that eliminates the need for storing a password in the 
connection string, such as: 
"Data source=my sql server; integrated security,=SSPI;Initial Catalog =my DB"there are some 
drawbacks to using integrated security, most of which you can overcome. Because integrated 
security requires a Windows account, it defeats connection pooling if you impersonate each 
authenticated principal using an individual Windows account. However, if you instead 
impersonate a limited number of Windows accounts, with each account representing a particular 
role, you can overcome this drawback. Each Windows account must be a domain account with 



070-330 

Actualtests.com - The Power of Knowing 
 

IIS and SQL Server in the same or trusted domains. Alternatively, you can create identical 
(including passwords) Windows accounts on each machine. 
After a typical installation, the default security authentication mode is Windows Authentication 
for SQL Server 2000, which is different from SQL Server 7.0. In SQL Server 7.0, the default 
authentication mode is Mixed (Windows Authentication Mode and SQL Server Authentication). 
Windows Authentication is a better security method because of the additional security features it 
provides, such as secure validation and encryption of passwords, password expiration and 
auditing. For more information, see Authentication Modes. 
If you configure SQL Server to use Windows Authentication, you could create one Windows 
account for read-only operations and another Windows account for read/write operations. You 
then map each Windows account to a SQL Server login and establish the desired permissions. 
Using application logic, you then determine which Windows account to impersonate when 
performing database operations. In SQL Server, you can add any Windows user account as a 
member of a fixed database role. Each member gains the permissions applied to the fixed 
database role. For more information, see Managing Permissions. 
For SQL Server 7.0, integrated security does not work with SQL Server's TCP/IP network 
library, but uses the named pipes network library instead. 
As an added security measure, the ConnectionString property of the SqlConnection object does 
not persist or return the full connection string by default. To do so, you must set Persist Security 
Info to true 

 
QUESTION 22: 
 
You are an application developer for Certkiller .com. You are conducting a code review of a 
Windows Forms application that was developed by another developer. The application 
includes a function named Logon(), which validates a user's logon credentials. The function 
displays a dialog box for the user to enter the user's credentials, and the function validates 
those credentials by using a database. 
The function returns a value of 0 if the user's password is incorrect, a value of 1 if the 
user's user ID is incorrect, and a value of 2 if both are correct. Users should receive access 
to the application only if the function returns a value of 2. A function named 
Certkiller App() is used to exit the application. 
The application must display a message to the user, depending on the result of the Logon() 
function. The application contains the following code segment. 
Dim intResult As Integer = Logon() 
Select Case intResult 
Case 0 
MsgBox "User name is OK, password incorrect." 
Case 1 
MsgBox "User name is incorrect." 
Case Else 
MsgBox "Welcome!" 
End Select 
If intResult <> 2 Then 
Certkiller App() 



070-330 

Actualtests.com - The Power of Knowing 
 

End If 
You need to improve the security of this code segment while maintaining its functionality. 
You decide to replace the existing code segment. 
Which code segment should you use? 
 
A. If Logon() 2 Then 
Console.WriteLine "Logon error." 
Certkiller App() 
End If 
B. If Logon() 2 Then 
Console.WriteLine "Logon error." 
Certkiller App() 
Else 
MsgBox "Welcome!" 
End If 
C. Dim intResult As Integer = Logon() 
Select Case intResult 
Case 0 
MsgBox "User name is OK, password incorrect." 
Certkiller App() 
Case 1 
MsgBox "User name is incorrect." 
Certkiller App() 
Case Else 
MsgBox "Welcome!" 
End Select 
D. Dim intResult As Integer = Logon() 
If intResult = 2 Then 
MsgBox "Welcome!" 
Else 
MsgBox "User name or password was incorrect." 
 
Answer: B 
Explanation 
Do not give more information than necessary in error messages. In this case we are specifically 
telling a potential intruder which part of the attempted login failed. It is best practice to show a 
single general message for success or failure on logons. 

 
QUESTION 23: 
 
You are an application developer for Certkiller .com. You are conducting a code review of 
an application that was developed by another developer. The code declares a variable 
named intPermission and a variable named Str Certkiller . 
A portion of the application code defines security permissions for the user. The application 
is designed so that intPermission contains an integer that indicates various permissions 
within the application, and Str Certkiller contains the name of a user group. The 



070-330 

Actualtests.com - The Power of Knowing 
 

intPermission variable also contains values that indicates other information about the user. 
The Str Certkiller and intPermission variables are initially populated by other components, 
which are called by the main application. 
The application contains the following code segment. (Line numbers are included for 
reference only.) 
1. Select Case Str Certkiller  
2. Case "Administrator", "Admin" 
3. Certkiller Permissions = Certkiller Permissions OR 256 
4. Case "Reviewer" 
5. Certkiller Permissions = Certkiller Permissions OR 128 
6. Case "Manager" 
7. Certkiller Permissions = Certkiller Permissions OR 64 
8. End Select 
The design document for the application states that Certkiller Permissions must have a 
value of zero when the user has no permissions. The design document also states that users 
not belonging to one of the four predefined groups must have no permissions. 
You need to ensure that the code segment assigns the correct value to Certkiller Permissions 
in all circumstances. 
What should you do? 
 
A. Add the following code before line 1 of the code segment. 
If intPermission = 0 Then 
Throw New ApplicationException 
End If 
B. Add the following code before line 1 of the code segment. 
Certkiller Permissions = 0 
C. Add the following code between lines 1 and 2 of the code segment. 
Case ** 
Certkiller Permissions = 0 
D. Add the following code between lines 7 and 8 of the code segment. 
Case Else 
Certkiller Permissions = 0 
 
Answer: D 
Explanation 
Since the string variable and the integer variable can contain values populated from other 
components, when the 'Select Case' is reached their contents will have those values as the 
default. Assigning '0' to the permissions at the beginning of the 'Select Case' would mean the 
value of the permission would always be zero before reaching the Select Case statements. 
Assigning '0' as the last case would catch all that are not part of the Select Case specification. 

 
QUESTION 24: 
 
You are an application developer for Certkiller .com. You are developing the business layer 
of a three-tier Web application. The application uses Forms authentication. File access 
permissions are assigned based on the role of the user. The authenticated user names and 



070-330 

Actualtests.com - The Power of Knowing 
 

roles are stored in a Microsoft SQL Server database. When a user is authenticated by the 
server, the user's cryptographically random session token and role are stored in a cookie 
on the client computer and used for access to other pages. 
You want users who are members of a role name Certkiller Staff to have Read permission 
and Write permission for the application files. You want users who are members of a role 
named Reader to have only Read permission for the files. You create a method named 
OpenFile to pass the name and role of the current user along with the name of a file. This 
information is used to open and return a file. The method is contained in the following code 
segment. 
Public Function OpenFile(ByVal UserInfo As HttpCookieCollection, 
_ 
ByVall File As String) As Stream 
Select Case UserInfo("Role").Value 
Case " Certkiller Staff" 
Return New FileStream(File, FileMode.Open, 
FileAccess.ReadWrite) 
Case Else 
Return New FileStream(File, FileMode.Open, FileAccess.Read) 
End Select 
End Function 
During a security review, you discover that some users will receive Write permission when 
they should not. 
You need to prevent unauthorized users from modifying files. 
What should you do? 
 
A. Change the application to use Windows authentication. 
B. Create a restrictive access control list (DACL) entry for each file. 
C. Verify the role by using the word Reader, instead of relying on the default case. 
D. Retrieve the user's role information from the database instead of from the cookie. 
 
Answer: D 
Explanation 
Cookies are a prime target for session high-jacking. There should be limited information stored 
in them as they can be manipulated client-side if stored there. Since the role is stored here in 
plain text it can just be changed to a higher role. The question only ask for one option but it 
specifically states that one role has read/write and the other only has read, but the code only 
checks for the read/write role, which would mean everyone using the code would at least have 
read when in only the one role has read only. It would be best to not only pull the role from a 
more secure/securable source other than the cookie but also check for the roles in the case select. 
Bulletproof persistent cookies to increase security 
Web browser cookies can enhance the user experience by providing additional functionality and 
ease of use. However, from an administration point of view, cookies are a security concern. 
Encrypt your cookies with this simple technique. 
Cookies offer an excellent way to keep small bits of information about the user readily available 
so that they don't have to be looked up again. They can allow you to keep users' numeric IDs 
handy instead of their logon names, which makes getting back to their security and authorization 



070-330 

Actualtests.com - The Power of Knowing 
 

easier and quicker. However, cookies represent a dangerous risk: Users may choose to tamper 
with the information and see what havoc it might cause. 
Risks of cookie tampering 
To understand how using cookies can create huge security risks, consider a site that stores the 
user's ID in a database in a cookie. The cookie is persistent, and the site never validates the 
information in the cookie. It's assumed to be correct. The user goes to the site and logs in. He or 
she looks at the cookie file and determines that only an ID is being stored in it. The user resets 
the number in the file to 1 and logs back into the site. 
For most sites, the super user is the first ID inserted into the database, and it's usually never 
disabled. If the site doesn't validate the value from the cookie, the user has become a complete 
administrator with a trivial amount of text editing. Any unchecked information placed in a 
cookie can represent a potential security problem. 

 
QUESTION 25: 
 
You are an application developer for Certkiller .com. To prevent malicious code from 
running, a written company policy does not permit developers to log on by using accounts 
that have more permissions than necessary. 
Your user account is a member of the Users group and the VS Developers group. You 
attempt to run an application that requires Administrator-level permissions. You receive 
an error message that states that permission is denied. 
You need to be able to run the application. 
What should you do? 
 
A. Ask the network administrator to add your user account to the domain Administrators group. 
B. Ask the administrator of your client computer to add your user account to the local 
Administrators group. 
C. Add the administrator of your client computer to add your user account to the Power Users 
group. 
D. Run the application by using the runas command and specify a user account in the local 
Administrators group. 
 
Answer: D 
Explanation 
Run Using a Least-Privileged Account 
You should develop applications using a non administrator account. Doing so is important 
primarily to limit the exposure of the logged on user and to help you to design more secure 
software. For example, if you design, develop, and test an application while you are interactively 
logged in as an administrator, you are much more likely to end up with software that requires 
administrative privileges to run. 
You should not generally log on using the local administrator account. The account that you use 
on a daily basis should not be a member of the local Administrators group. Sometimes you might 
still need an account that has administrative privileges-for example, when you install software or 
edit the registry. Because the default local administrator account is well known, however, and it 
is the target of many attacks, create a non-standard administrator account and use this only when 
it is required. 



070-330 

Actualtests.com - The Power of Knowing 
 

To create accounts for development 
Remove your current user account from the Administrators group if it is a member. 
Create a new custom administration account using a nonstandard name and strong 
password. 
Use your non-administrator account to logon interactively on a daily basis. 
When you need to run a command with administrative privileges, use your custom 
administration account with the Runas.exe command line utility. 
Running Privileged Commands 
To run a privileged command, you can use one of the following techniques to temporarily 
change your security context: 
Use the Runas.exe utility from a command line. 
The following command shows you how to use the Runas.exe utility to launch a command 
console that runs under your custom administration account. 
runas.exe /user:mymachine\mycustomadmin cmd.exe 
By executing Cmd.exe, you start a new command window that runs under the security context of 
the user you specify with the /user switch. Any program you launch from this command window 
also runs under this context. 
Use Run As from Windows Explorer. You can right-click an executable file in Windows 
Explorer and click Run As. To display this item on Windows 2000, hold the shift key down and 
then right-click an executable file. When you click Run As, you are prompted for the credentials 
of the account you want to use to run the executable file. 
Use Run As shortcuts. You can create quick launch and desktop shortcuts to easily run 
applications using a privileged user account. The following example shows a shortcut that you 
can use to run Windows Explorer (Explorer.exe) using the administrator account: 
%windir%\System32\runas.exe /user:administrator explorer 
Note If using a non-administrator account proves impractical for your environment, still test 
your application or component while running as a least privileged user to catch and correct 
problems before deploying. For example, your application might incorrectly require 
administrator privileges without your realizing it, which would cause the application to fail when 
it is deployed in a production environment. 

 
QUESTION 26: 
 
You are an application developer for Certkiller .com. You are using the Microsoft .NET 
Framework to develop an application that uses a Web service. The Web service is provided 
by a vendor and is accessed over the Internet. 
Your application retrieves string data from the Web service and stored it in a variable 
named str Certkiller Data. The application also defines a sqlCommand object named 
objCmd. The application contains the following code segment. 
Dim strQuery As String 
strQuery = "INSERT INTO WebTable (WebData) VALUES(" 
strQuery &= str Certkiller Data & ")" 
objCmd.CommandText = strQuery 
objCmd.ExecuteNonQuery() 
You need to improve the security of this code segment while maintaining its functionality. 
What should you do? 



070-330 

Actualtests.com - The Power of Knowing 
 

 
A. Modify the application to use declarative security. 
B. Ask the vendor to provide a Web service that is written by using the .NET Framework. 
C. Ask the vendor to perform data validation on all data that is provided by the Web service. 
D. Format the contents of str Certkiller Data to be compatible with the SQL Server data type and 
remove encoded data or SQL statements. 
 
Answer: D 
Explanation 
It is best for the approach that you must validate and cleanse data before it is used and/or store. 
Rule number two is: data must be validated as it crosses the boundary between untrusted and 
trusted environments. By definition, trusted data is data you or an entity you explicitly trust has 
complete control over untrusted  data refers to every thing else.in short any data submitted by a 
user is initially untrusted data. 
When it comes to SQL statements, all dynamic SQL is bad, and paramterized store procedures 
must be used. Dynamic SQL can be easily compromised and used for SQL injection attacks. 
All relational databases-including SQL Server, Oracle, IBM DB2, and MySQL-are susceptible to 
SQL-injection attacks. You can buy products that protect your system from SQL injection, but 
for most businesses, the defense against SQL-injection attack must be code-based. The opening 
for SQL-injection attacks comes primarily through Web applications that combine user input 
with dynamic SQL to form SQL commands that the application sends to the database. Here are 
four important steps you can take to protect your Web applications from SQL-injection attacks. 
In addition to the following tips, the Microsoft Patterns and Practices Library that I highlighted 
last month provides advice about securing your data-access applications. 
4. Principle of Least Privilege 
The account an application uses to connect to the database should have only the privileges that 
application requires. The security permissions that an intruder gains from a compromised 
application define the harm that the intruder can inflict. Applications shouldn't connect as sa or 
with the Administrator account. Instead, the account should have permissions to access only the 
database objects it needs. 
3. Validate All Input 
If an input field should contain numeric data, then verify that users enter only numbers. If 
character data is acceptable, check for unexpected characters. Make sure your application looks 
for characters such as semicolons, equals signs, double dashes, brackets, and SQL keywords. 
The .NET Framework provides regular expressions that enable complex pattern matching, a 
good way to test user input. Limiting the length of accepted user input is also a good idea. 
Validating your input might seem obvious, but many applications are vulnerable to 
SQL-injection attacks because intruders can use the openings that Web applications offer. 
2. Avoid Dynamic SQL 
Dynamic SQL is a great tool for performing ad hoc queries, but combining dynamic SQL with 
user input creates exposure that makes SQL-injection attacks possible. Replacing dynamic SQL 
with prepared SQL or stored procedures is feasible in most applications. Prepared SQL and 
stored procedures accept user input as parameter data rather than as SQL commands, thus 
limiting what an intruder can do. Of course, replacing dynamic SQL with a stored procedure 
won't help you if you use the user input to build dynamic SQL statements in your stored 
procedures. In that case, the dynamic SQL that the user input creates will still be corrupted, and 



070-330 

Actualtests.com - The Power of Knowing 
 

your database will still be in danger of SQL-injection attack. 
1. Use Double Quotes 
Replace all the single quotes that your users' input contains with double quotes. This simple 
precaution will go a long way toward warding off SQL-injection attacks. Single quotes often 
terminate SQL expressions and give the input more power than is necessary. Replacing the 
single quotes with double quotes will cause many SQL-injection attacks to fail. 

 
QUESTION 27: 
 
You are an application developer for Certkiller .com. You are developing a three-tier 
application. You enter sample data to test the application. The following exception is 
caught by the data layer before the application continues to run. 
Cannot set column 'Column1' to 'Text too long for maximum 
length'. 
The value violates the MaxLength limit of this column. 
You need to improve the security of the application. 
Which two actions should you perform? (Each correct answer presents part of the solution. 
Choose two) 
 
A. Increase the maximum length of data characters allowed in the column. 
B. Validate all incoming data character lengths at the business layer. 
C. Modify the data layer to process data above the maximum length. 
D. 
Modify the user interface to prevent users from entering data above the maximum character 
length. 
 
Answer: B 
Explanation 
It is best for the approach that you must validate and cleanse data before it is used and/or store. 
Rule number two is: data must be validated as it crosses the boundary between untrusted and 
trusted environments. By definition, trusted data is data you or an entity you explicitly trust has 
complete control over untrusted  data refers to every thing else.in short any data submitted by a 
user is initially untrusted data. 
TextBox.MaxLength Property 
Gets or sets the maximum number of characters allowed in the text box. 
Public Overridable Property MaxLength As Integer 
The maxumum number of characters allowed in the text box. The default is 0, which indicates 
that the property is not set. 
"A validator is a control that checks one input control for a specific type of error condition and 
displays a description of that problem." 
This is an important definition, because it means that you frequently need to use more than one 
validator control for each input control. 
For example, if you want to check whether or not user input in a text box is (a) nonblank, (b) a 
valid date between a particular range and (c) less than the date in another text input control, you 
would want to use three validators. While this might seem cumbersome, remember that to be 
helpful to the user, you would want to have three different text descriptions for all these cases. 



070-330 

Actualtests.com - The Power of Knowing 
 

The different types of validators are listed as follows: 
  
RequiredFieldValidator Checks that the user has entered or 
  selected anything. 
RegularExpressionValidator Checks user input against a regular 
  expression. This allows a wide variety of 
  checks to be made and can be used for 
  things like ZIP codes and phone numbers. 
CompareValidator Compares an input control to a fixed value 
  or another input control. It can be used for 
  password verification fields, for example. 
  It is also possible to do typed date and 
  number comparisons. 
RangeValidator Much like CompareValidator, but can 
  check that the input is between two fixed 
  values. 
CustomValidator This allows you to write your own code to 
  take part in the validation framework. 
    

The validator controls are the main elements of the solution. A validator is a visual ASP.NET 
control that checks a specific validity condition of another control. It generally appears to the 
user as a piece of text that displays or hides depending on whether the control it is checking is in 
error. It can also be an image, or can even be invisible and still do useful work. There are five 
types of validator controls that perform different types of checks. 
Another element in our solution is the ValidationSummary control. Large data entry pages 
generally have an area where all errors are listed. The ValidationSummary automatically 
generates this content by gathering it up from validator controls on the page. 
The final element is the Page object itself. It exposes the all-important "IsValid" property, which 
you check in server code to determine if all of the user input is OK. 

 
QUESTION 28: 
 
You are an application developer for Certkiller .com. You are developing an ASP.NET Web 
application that uses Integrated Windows authentication to identify users. When a user 
runs the application for the first time, a new record is created in a user database. The 
application must work for both local users and domain users. All domain user accounts are 
created in the default user container. 
You need to develop code that will generate the primary key to store in the user database 
to uniquely identify each user. 
Which code segment should you use? 
 
A. ReadOnly Property PrimaryKey() As String 
Get 



070-330 

Actualtests.com - The Power of Knowing 
 

Dim Wi As WindowsIdentity = WindowsIdentity.GetCurrent() 
Dim Username As String = Wi.Name.ToUpper() 
Dim Sep As Integer = Username.IndexOf("\") 
If Sep > 0 Then 
Return Username.Substring(Sep + 1) 
End If 
Return Username 
End Get 
End Property 
B. ReadOnly Property PrimaryKey() As String 
Get 
Dim Wi As WindowsIdentity = WindowsIdentity.GetCurrent() 
Return Wi.Name.ToUpper() 
End Get 
End Property 
C. ReadOnly Property PrimaryKey() As String 
Get 
Dim Wi As WindowsIdentity = WindowsIdentity.GetCurrent() 
Dim Username As String = Wi.Name.ToUpper() 
Dim Sep As Integer = Userbame.IndexOf("\") 
If Sep > 0 Then 
Return Username.Substring(Seop +1) & "@" & Username.Substring(0, 
Sep) 
End If 
Return Username 
End Get 
End Property 
D. ReadOnly Property PrimaryKey() As String 
Get 
Dim WI As WindowsIdentity = WindowsIdentity.GetAnonymous() 
Dim Username As String = Wi.Name.ToUpper() 
Return Username 
 
Answer: A 
Explanation 
There are simpler ways to get the current system user name and increment it than the code in this 
question. 
For example, 'Environment.UserName or SystemInformation.UserName', which returns 
ComputerName/UserID. 
If all that is needed is just the userid the, 'Environment.UserName or 
SystemInformation.UserName'. 
Something like the following would help with increments: 
Dim strUser As String = _ 
Environment.UserName.Substring(Environment.UserName.IndexOf("/") + 1) 
Therefore either of the following could be used to make this easier 
SystemInformation.UserName 



070-330 

Actualtests.com - The Power of Knowing 
 

Environment.UserName 
WindowsPrincipal.Identity 

 
QUESTION 29: 
 
You are an application developer for Certkiller .com. You develop an application that 
customers will be able to automate by using Microsoft Visual Basic for Applications (VBA) 
scripts. The application will be accompanied by sample VBA scripts. 
Customers must be able to review the sample VBA scripts. You want customers to be able 
to automate the installed application by using any of the sample VBA scripts or by creating 
their own automation scripts. You also want to allow customers to choose not to apply any 
automation scripts. 
You need to distribute the sample VBA scripts with your application in a manner that 
minimizes security risks for the customer. 
What should you do? 
 
A. On installation, place all the sample VBA scripts in a subfolder of the application's 
installation folder. 
B. On installation, as the user to choose one sample VBA script to install as the application's 
automation script. 
C. Do not install the same VBA scripts. 
Leave the files in a folder on the installation media. 
D. Encrypt same VBA scripts on the installation media and decrypt the files during installation. 
 
Answer: C 
Explanation 
Security in deployment is one of the tenets of the Microsoft Trustworthy Computing Security 
Framework. This section contains articles that will help you understand how to deploy your 
applications in a secure manner and how to use features like code access security to deploy 
applications in alternative security contexts. 
sample application scripts,etc;do not through muich quality security review at all,if any 
It is best practice not to have them auto installed with deployments as they can be used against 
the environment/computer. 
Users can always copy what they need. VBAs are very powerful and can be used against systems 
where they are installed, especially if they are installed without the user's full understanding of 
the implications of installing them. Since they are really templates, they are not required for the 
installation or for normal application operation in the case. Prime example is MSDE which is 
part of Microsoft Office 2000 and higher, it is note required and therefore is a separate install. 

 
QUESTION 30: 
 
You are an application developer for Certkiller .com. You are developing an application. 
Part of the application accepts a URL from the user and stored the URL in a variable 
named strInput. Only URLs that specify HTTP or FTP as the protocol are usable by the 
application. URLs specifying the messenger, news, file, or other protocols are not permitted 
because they might allow the user to bypass certain security features. 



070-330 

Actualtests.com - The Power of Knowing 
 

You need to ensure that the URL provided by the user specifies only HTTP or FTP as the 
protocol. 
What should you do? 
 
A. Test the user's input by using the following regular expression. 
^(http:|ftp:) 
Reject the input that does not match the regular expression. 
B. Test the user's input by using the following regular expression. 
^(messenger:|file:|news:) 
Reject input that matches the regular expression. 
C. Modify the contents of strInput so that all instances of messenger or news are replaced with 
http, and all instances of file are replaced with ftp. 
D. Add the following code segment to the application. 
If strInput.Chars(0) <> "h" And strInput.Chars(0) <> "f" Then 
MsgBox "Protocol is not allowed." 
strInput = "" 
End If 
E. Add the following code segment to the application. 
Select Case StrInput 
Case "messenger", "news", "file" 
MsgBox "Protocol is not allowed." 
strInput = "" 
 
Answer: A 
Explanation 
It is best for the approach that you must validate and cleanse data before it is used and/or store. 
Rule number two is: data must be validated as it crosses the boundary between untrusted and 
trusted environments. By definition, trusted data is data you or an entity you explicitly trust has 
complete control over,untrusted data.refers to everything else.in short, any data submitted by a 
user is initially untrusted data. 
Always test for what is acceptable, discard the rest. As with firewalls, only what is specifically 
needed is allowed to pass all else is blocked/dropped. Testing for what is unacceptable is prone 
to error because it is not possible to test for all things that can go wrong or that should be 
rejected. 
Regular expressions are the best way of doing this. 
A Regular Expression Rosetta StoneRegular expressions are incredibly powerful, and their 
usefulness extends beyond just restricting input. They constitute a technology worth 
understanding for solving many complex data manipulation problems. I write many applications, 
mostly in Perl and C#, that use regular expressions to analyze log files for attack signatures and 
to analyze source code for security defects. 
Regular Expressions in Managed CodeMost if not all applications written in C#, Managed C++, 
Microsoft Visual Basic .NET, ASP.NET, and so on have access to the .NET Framework and as 
such can use the System.Text.RegularExpressions namespace. I've already outlined its syntax 
earlier in this chapter. However, for completeness, following are C#, Visual Basic .NET, and 
Managed C++ examples of the date extraction code I showed earlier in Perl. 
Imports System.Text.RegularExpressions 



070-330 

Actualtests.com - The Power of Knowing 
 

Dim s As String 
Dim r As Regex 
s = "We leave at 12:15pm for Mount Doom." 
r = New Regex(".*(\d{2}:\d{2}[ap]m)", RegexOptions.IgnoreCase) 
If r.Match(s).Success Then 
Console.Write(r.Match(s).Result("$1")) 
End IfRegular Expressions 
Regular expressions are a concise and flexible notation for finding and replacing patterns of text. 
The regular expressions used within Visual Studio are a superset of the expressions used in 
Visual C++ 6.0, with a simplified syntax. 
You can use the following regular expressions in the Find, Replace, Find in Files or Replace in 
Files dialog boxes to refine and expand your search. 
NoteYou must select the Use check box in the Find, Replace, Find in Files, and Replace in Files 
dialog boxes before using any of the following expressions as part of your search criteria. 
The following expressions can be used to match characters or digits in your search string: 
  
Expression   Syntax Description 
Any character .   Matches any one character 
      except a line break. 
Maximal - zero or more *   Matches zero or more 
      occurrences of the 
      preceding expression. 
Maximal - one or more +   Matches at least one 
      occurrence of the preceding 
      expression. 
Minimal - zero or more @   Matches zero or more 
      occurrences of the 
      preceding expression, 
      matching as few characters 
      as possible. 
Minimal - one or more #   Matches one or more 
      occurrences of the 
      preceding expression, 
      matching as few characters 
      as possible. 
Repeat n times ^n   Matches n occurrences of 
      the preceding expression. 
      For example, [0-9]^4 
      matches any 4-digit 
      sequence. 
Set of characters []   Matches any one of the 
      characters within the []. To 
      specify a range of 



070-330 

Actualtests.com - The Power of Knowing 
 

      characters, list the starting 
      and ending character 
      separated by a dash (-), as 
      in [a-z]. 
Character not in set [^...]   Matches any character not 
      in the set of characters 
      following the ^. 
Beginning of line ^   Anchors the match to the 
      beginning of a line. 
End of line $   Anchors the match to the 
      end of a line. 
Beginning of word <   Matches only when a word 
      begins at this point in the 
      text. 
Leading the way in IT testing and certification tools, www. Certkiller .com 
End of word >   Matches only when a word 
      ends at this point in the text. 
Grouping ()   Groups a subexpression. 
      

The following table lists the syntax for matching by standard Unicode character properties. The 
two-letter abbreviation is the same as listed in the Unicode character properties database. These 
may be specified as part of a character set. For example, the expression [:Nd:Nl:No] matches any 
kind of digit. 
  

Expression   Syntax Description 
Uppercase letter :Lu   Matches any one capital 
      letter. For example, :Luhe 
      matches "The" but not 
      "the". 
Lowercase letter :Ll   Matches any one lower case 
      letter. For example, :Llhe 
      matches "the" but not 
      "The". 
Title case letter :Lt   Matches characters that 
      combine an uppercase letter 
      with a lowercase letter, 
      such as Nj and Dz. 
Modifier letter :Lm   Matches letters or 
      punctuation, such as 
      commas, cross accents, and 
      double prime, used to 



070-330 

Actualtests.com - The Power of Knowing 
 

      indicate modifications to 
      the preceding letter. 
Other letter :Lo   Matches other letters, such 
      as gothic letter ahsa. 
Decimal digit :Nd   Matches decimal digits 
      such as 0-9 and their 
      full-width equivalents. 
Letter digit :Nl   Matches letter digits such as 
      roman numerals and 
      ideographic number zero. 
Other digit :No   Matches other digits such as 
      old italic number one. 
Open punctuation :Ps   Matches opening 
      punctuation such as open 
      brackets and braces. 
Close punctuation :Pe   Matches closing 
      punctuation such as closing 
      brackets and braces. 
Initial quote 
punctuation :Pi   Matches initial double 

      quotation marks. 
Final quote 
punctuation :Pf   Matches single quotation 

      marks and ending double 
      quotation marks. 
Dash punctuation Leading the way in :Pd IT testing and certificationMatches the dash mark. tools, www. Certkiller .com
Connector 
punctuation :Pc   Matches the underscore or 

      underline mark. 
      

In addition to the standard Unicode character properties, the following additional properties may 
be specified. These properties may be specified as part of a character set. 

  Expression   Syntax Description 
Alpha   :Al   Matches any one character. 
        For example, :Alhe matches 
        words such as "The", 
        "then", and "reached". 
Numeric :Nu   Matches any one number or 
        digit. 
Punctuation :Pu   Matches any one 
        punctuation mark, such as 



070-330 

Actualtests.com - The Power of Knowing 
 

        ?, @, ', and so on. 
White space :Wh   Matches all types of white 
        space, including publishing 
        and ideographic spaces. 
Bidi   :Bi   Matches characters from 
        right-to-left scripts such as 
        Arabic and Hebrew. 
Hangul   :Ha   Matches Korean Hangul 
        and combining Jamos. 
Hiragana :Hi   Matches hiragana 
        characters. 
Katakana :Ka   Matches katakana 
        characters. 
Ideographic/Han/Kanji :Id   Matches ideographic 
        characters, such as Han and 
        Kanji. 
       

 
QUESTION 31: 
 
You are an application developer for the research department of Certkiller .com. All 
department applications are developed by using the Microsoft .NET Framework. 
Application permissions are configured by using the .NET Framework. A written company 
policy states that applications that are not controlled by the .NET Framework are not 
allowed to run on computers in the research department. All users in the research 
department have a separate client computer to run commercial applications that are not 
written by using the .NET Framework. 
You are conducting a code review of a new research department application that was 
written by another developer. The application contains the following code segment. 
Dim objGeneric As Object 
objGeneric = CreateObject(" Certkiller .ExternalData") 
objGeneric = CreateObject(" Certkiller .ExternalData") 
objGeneric.RetrieveData() 
SQLSave(objGeneric.Data) 
You discover that the SQLSave() function inserts information into a Microsoft SQL Server 
database. 
You need to ensure that this code segment complies with the written policy for client 
computers in the research department. 
What should you do? 
 
A. Add a project reference for Certkiller .ExternalData and replace the first two lines of the code 
segment with the following code: 
Dim objGeneric As Certkiller .ExternalData 
B. Rewrite Certkiller .ExternalData as a managed code component or obtain an equivalent 
managed code component. 



070-330 

Actualtests.com - The Power of Knowing 
 

C. Move the SQLSave() function to a managed code component. 
D. Validate the contents of objGeneric.Data to remove SQL statements or encoded data. 
 
Answer: B 
Explanation 
Only managed code must be used on the research computers. 
Since the code shows the ExternalData as a called component (assuming that this is not managed 
code component), we need to change it to a managed code component. 

 
QUESTION 32: 
 
You are an application developer for Certkiller .com. You are conducting a code review of 
an application that was created by another developer for in Certkiller . The application 
accesses data that is stored in a Microsoft SQL Server database. 
The application accepts input from a Web page into a variable named strInput. The 
application already contains a function named Certkiller Input(). The Certkiller Input() 
function ensures that the user's input contains only alphanumeric characters and that the 
input contains no SQL statements, spaces, or other invalid data. The input is then saved in 
the SQL Server database. 
While testing the application, you discover that Certkiller Input() is properly removing the 
space from input such as Hello World. However, when you enter Hello%20World, the 
function produces Hello20World instead of HelloWorld. 
You need to ensure that the invalid input is removed by the Certkiller Input() function. 
What should you modify the Certkiller Input() function to do? 
 
A. Use the HttpUtility.URLDecode method and the HttpUtility.HTMLDecode method to modify 
the user input. 
B. Look for percent signs in the input and remove the percent sign and the two characters 
following the percent sign. 
C. Remove all punctuation marks and symbols from the input. 
D. Use the following regular expression to modify the input. 
[^\w\.@-] 
 
Answer: A 
Explanation 
HttpUtility.UrlDecode Method (Byte[], Encoding) 
Converts a URL-encoded byte array into a decoded string, using the specified decoding object. 
Overloads Public Shared Function UrlDecode( _ ByVal bytes() As Byte, _ ByVal eAs 
Encoding _) As StringReturn ValueThe decoded string. 
RemarksIf characters such as blanks and punctuation are passed in an HTTP stream, they might 
be misinterpreted at the receiving end. URL encoding converts characters that are not allowed in 
a URL into character-entity equivalents;URL decoding revers the encoding. for example, 
when embedded in a block of text to be transmitted in a URL, the characters < and > are encoded 
as %3c and %3d. 
HttpUtility.HtmlDecode Method (String, TextWriter) 
Converts a string that has been HTML-encoded into a decoded string, and sends the decoded 



070-330 

Actualtests.com - The Power of Knowing 
 

string to a TextWriter output stream. 
[Visual Basic]Overloads Public Shared Sub HtmlDecode( _ ByVal sAs String, _ ByVal 
outputAs TextWriter _RemarksIf characters such as blanks and punctuation are passed in an 
HTTP stream, they might be misinterpreted at the receiving end. HTML encoding converts 
characters that are not allowed in HTML into character-entry equivalents; 
HTML decoding reverses the encoding. For example, when embedded in a block of text, the 
characters < and >, are encoded as < and > for HTTP transmission. 

 
QUESTION 33: 
 
You are an application developer for Certkiller .com. You develop an application that stores 
and retrieves files in a folder on a file server. The files are named by users. The design 
specifications for the application require you to prevent users from accessing files that are 
stored in any other folder. 
You need to add a function that will prevent files that have the .LNK file name extension 
from being stored in the folder. 
Which code segment should you use? 
 
A. Public Function OpenFile(ByVal Name As String) As FileStream 
If Name.ToLower().EndsWith("lnk") Then 
Throw New ApplicationException("Unable to store LNK files") 
End If 
Return New FileStream(Name, FileMode.Create) 
End Function 
B. Public Function OpenFile(ByVal Name As String) As FileStream 
Dim Extension As Integer = Len(Name) - 1 
Dim Nchar() As Char = Name.ToCharArray() 
While NChar(Extension) = " " 
Extension = Extension - 1 
End While 
Name = Name.Substring(0, Extension + 1) 
If Name.ToLower().EndsWith(".lnk") Then 
Throw New ApplicationException("Unable to store LNK files") 
End If 
Return New FileStream(Name, FileMode.Create) 
End Function 
C. Public Function OpenFile(ByVal Name As String) As FileStream 
Dim Fi As FileInfo = New FileInfo(name) 
If Fi.Extension.ToLower().Equals(".lnk") Then 
Throw New ApplicationException("Unable to store LNK files") 
End If 
Return Fi.Open(FileMode.Create) 
End Function 
D. Public Function OpenFile(ByVal Name As String) As FileStream 
Dim Fi As FileInfo = New FileInfo(Name) 
If Fi.Attributes <> FileAttributes.Normal Then 



070-330 

Actualtests.com - The Power of Knowing 
 

Throw New ApplicationException("Unable to store LNK files") 
End If 
 
Answer: C 
Explanation 
Get just the extension of a file from the complete path string 
Use FileInfo. Instantiate a FileInfo object with the full path as constructor arg. Then simply call 
FileInfo.Extension and you will get just the extension of the file. 
File info finfo=new file info (strFileName); 
Console.writeline (finfo.Extension); 
FileInfo Class 
Provides instance methods for the creation, copying, deletion, moving, and opening of files, and 
aids in the creation of FileStream objects. 
For a list of all members of this type, see FileInfo Members. 
System.Object 
System.MarshalByRefObject 
System.IO.FileSystemInfo 
System.IO.FileInfo 
<Serializable>NotInheritable Public Class FileInfo Inherits FileSystemInfoRemarksUse the 
FileInfo class for typical operations such as copying, moving, renaming, creating, opening, 
deleting, and appending to files. 
Many of the FileInfo methods return other I/O types when you create or open files. You can use 
these other types to futher manipulate a file. For more information, see specific FileInfo 
members such as Open, OpenRead, OpenText, CreateText, or Create. 
If you are going to reuse an object several times, consider using the instance method of FileInfo 
instead of the corresponding static methods of the File class, because a security check will not 
always be necessary. 
By default, full read/write access to new files is granted to all users. 
The following table describes the enumerations that are used to customize the behavior of 
various FileInfo methods. 
  Enumeration Description 
FileAccess   Specifies read and write access to a file. 
FileShare   Specifies the level of access permitted for 
    a file that is already in use. 
FileMode   Specifies whether the contents of an 
    existing file are preserved or overwritten, 
    and whether requests to create an existing 
    file cause an exception. 
     

NoteIn members that accept a path as an input string, that path must be well-formed or an exception is raised. 
For example, if a path is fully qualified but begins with a space, the path is not trimmed in 
methods of the class. Therefore, the path is malformed and an exception is raised. Similarly, a 
path or a combination of paths cannot be fully qualified twice. For example, "c:\temp 
c:\windows" also raises an exception in most cases. Ensure that your paths are well-formed when 



070-330 

Actualtests.com - The Power of Knowing 
 

using methods that accept a path string. 
In members that accept a path, the path can refer to a file or just a directory. The specified path 
can also refer to a relative path or a Universal Naming Convention (UNC) path for a server and 
share name. For example, all the following are acceptable paths: 
* "c:\\MyDir\\MyFile.txt" in C#, or "c:\MyDir\MyFile.txt" in Visual Basic. 
* "c:\\MyDir" in C#, or "c:\MyDir" in Visual Basic. 
* "MyDir\\MySubdir" in C#, or "MyDir\MySubDir" in Visual Basic. 
* "\\\\MyServer\\MyShare" in C#, or "\\MyServer\MyShare" in Visual Basic. 
For an example of using this class, see the Example section below. The following table lists 
examples of other typical or related I/O tasks. 
  

To do this... See the example in this topic... 
Create a text file. Writing Text to a File 
Write to a text file. Writing Text to a File 
Read from a text file. Reading Text from a File 
Append text to a file. Opening and Appending to a Log File 
  File.AppendText 
  FileInfo.AppendText 
Rename or move a file. File.Move 
  FileInfo.MoveTo 
Delete a file. File.Delete 
  FileInfo.Delete 
Copy a file. File.Copy 
  FileInfo.CopyTo 
Get the size of a file. FileInfo.Length 
Get the attributes of a file. File.GetAttributes 
Set the attributes of a file. File.SetAttributes 
Determine if a file exists. File.Exists 
Read from a binary file. Reading and Writing to a Newly Created 
  Data File 
Write to a binary file. Reading and Writing to a Newly Created 
  Data File 
Retrieve a file extension. Path.GetExtension 
Retrieve the fully qualified 
path of a file. Path.GetFullPath 

Retrieve the file name and 
extension from Path.GetFileName 

a path.   
Change the extension of a 
file. Path.ChangeExtension 

    



070-330 

Actualtests.com - The Power of Knowing 
 

.NETCompactFramework Platform Note:The .NET Compact Framework does not support getting or setting 
directory attributes. 
FileStream Class 
Exposes a Stream around a file, supporting both synchronous and asynchronous read and write 
operations. 
For a list of all members of this type, see FileStream Members. 
System.Object 
System.MarshalByRefObject 
System.IO.Stream 
System.IO.FileStream 
System.IO.IsolatedStorage.IsolatedStorageFileStream 
Public Class FileStream Inherits StreamRemarksUse the FileStream class to read from, write 
to, open, and close files on a file system, as well as to manipulate other file-related operating 
system handles such as pipes, standard input, amd standard output.You can specify read and 
write operations to be either synchronous or asynchronous. FileStream buffers input and 
output for better performance. 
FileStream objects support random access to files using the Seek method. Seek allows the 
read/write position to be moved to any position within the file. This is done with byte offset 
reference point parameters. The byte offset is relative to the seek reference point, which can be 
the beginning, the current position, or the end of the underlying file, as represented by the three 
properties of the SeekOrigin class. 
NoteDisk files always support random access. At the time of construction, the CanSeek property 
value is set to true or false depending on the underlying file type. Specifically, if the underlying 
file type is FILE_TYPE_DISK, as defined in winbase.h, the CanSeek property value is true. 
Otherwise, the CanSeek property value is false. 
Although the synchronous methods Read and Write and the asynchronous methods BeginRead, 
BeginWrite, EndRead, and EndWrite can work in either synchronous or asynchronous mode, the 
mode affects the performance of these methods. FileStream defaults to opening files 
synchronously, but provides the FileStream(IntPtr, FileAccess, Boolean, Int32, Boolean) and 
FileStream(String, FileMode, FileAccess, FileShare, Int32, Boolean) constructors to open files 
asynchronously. 
If a process terminates with part of a file locked or closes a file that has outstanding locks, the 
behavior is undefined. 
For directory and other file operations, see the File, Directory, and Path classes. The File class is 
a utility class with static methods primarily for the creation of FileStream objects based on file 
paths and the standard input, standard output, and standard error devices. The MemoryStream 
class creates a stream from a byte array and functions similarly to a FileStream. 
For an example of using this class, see the Example section below. The following table lists 
examples of other typical or related I/O tasks. 
  

To do this... See the example in this topic... 
Create a text file. Writing Text to a File 
Write to a text file. Writing Text to a File 
Read from a text file. Reading Text from a File 
Append text to a file. Opening and Appending to a Log File 



070-330 

Actualtests.com - The Power of Knowing 
 

  File.AppendText 
  FileInfo.AppendText 
Rename or move a file. File.Move 
  FileInfo.MoveTo 
Delete a file. File.Delete 
  FileInfo.Delete 
Copy a file. File.Copy 
  FileInfo.CopyTo 
Get the size of a file. FileInfo.Length 
Get the attributes of a file. File.GetAttributes 
Set the attributes of a file. File.SetAttributes 
Determine if a file exists. File.Exists 
Read from a binary file. Reading and Writing to a Newly Created 
  Data File 
Write to a binary file. Reading and Writing to a Newly Created 
  Data File 
Retrieve a file extension. Path.GetExtension 
Retrieve the fully qualified 
path of a file. Path.GetFullPath 

Retrieve the file name and 
extension from Path.GetFileName 

a path.   
Change the extension of a file. Path.ChangeExtension 
    

 
QUESTION 34: 
 
You are an application developer for Certkiller .com. You are developing a Windows Forms 
client application that will be used within Certkiller to access data in a Microsoft SQL 
Server database. The application defines a SqlConnection object named objConn and a 
SQLCommand object named objCmd. The application also includes the following code 
segment. 
Dim objReader As SQLDataReader = obj.Cmd.ExecuteReader() 
You need to improve the security of this code segment. You decide to replace the existing 
code segment. 
Which code segment should you use? 
 
A. Try 
Dim objReader As SQLDataReader = objCmd.ExecuteReader() 
Catch 
MsqBox "An error occurred while querying SQL Server." 
End Try 
B. Dim objReader As SQLDataReader 
objReader = objCmd.ExecuteReader() 



070-330 

Actualtests.com - The Power of Knowing 
 

objConn.Close() 
C. Try 
Dim objReader As SQLDataReader 
objReader = objCmd.ExecuteReader(9 
Catch e As Exception 
MsgBox e.Message 
End Try 
D. Dim objReader As SQLDataReader 
objReader = objCmd.ExecuteReader() 
If Not objReader.HasRows Then 
MsgBox "An error occurred while querying SQL Server." 
End If 
 
Answer: A 
Explanation 
You can use the ADO.NET DataReader to retrieve a read-only, forward-only stream of data 
from a database. Results are returned as the query executes, and are stored in the network buffer 
on the client until you request them using the Read method of the DataReader. Using the 
DataReader can increase application performance both by retrieving data as soon as it is 
available, rather than waiting for the entire results of the query to be returned, and (by default) 
storing only one row at a time in memory, reducing system overhead. 
After creating an instance of the Command object, you create a DataReader by calling 
Command.ExecuteReader to retrieve rows from a data source, as shown in the following 
example. 
Dim myReader As SqlDataReader = myCommand.ExecuteReader() 
You use the Read method of the DataReader object to obtain a row from the results of the query. 
You can access each column of the returned row by passing the name or ordinal reference of the 
column to the DataReader. However, for best performance, the DataReader provides a series of 
methods that allow you to access column values in their native data types (GetDateTime, 
GetDouble, GetGuid, GetInt32, and so on). For a list of typed accessor methods, see the 
OleDbDataReader Class and the SqlDataReader Class. Using the typed accessor methods, when 
the underlying data type is known, reduces the amount of type conversion required when 
retrieving the column value. 
NoteThe Windows Server 2003 release of the .NET Framework includes an additional 
property for the DataReader, HasRows, which enables you to determine if the DataReader 
has returned any results before reading from it. 
Keep Exception Information PrivateAttackers often use information from an exception, such as 
the name of your server, database, or table to mount a specific attack on your system. Because 
exceptions can contain specific information about your application or data source, you can help 
your application and data source better protected by only exposing information to the client that 
is required. 
To avoid exposing private information through exceptions, do not return the contents of a system 
exception to the user. Instead, handle the exception internally. If a message must be sent to the 
user, return your own custom message that contains minimal information (such as "Connection 
failed. Please contact your system administrator."), and log the specific information so that an 
administrator can utilize it 



070-330 

Actualtests.com - The Power of Knowing 
 

Try....Catch....Finally Statement 
When an application runs, the code in the Try block is executed first, if the code gives any error, 
the error is handled by the catch block. We can have multiple catch block in the Try statement. 
(Because, our code may raise different exception on different situation.) 
For example, Let us assume that we are doing both file operation and database operation, there 
are changes for getting the IOExceptions, File Exceptions and Database exceptions. We need to 
handle all the exceptions, ie., we need to be prepared for everything (Whatever be the exception) 
our code should be capable of handling them. 
Syntax for Try....catch statement 
Try ' Block of code, where the chances of getting exception is there 
catch <Exception object< 'Block of code that nneds to be executed when the exception of that 
type is caught 
Finally 'Block of code that needs to be executed, even when there is no exceptions. End Try 
Finally block is executed just before exists the Try...Catch...Finally back in which the error 
occured. Finaly block is executed even when the exception is not raised. 
Finally block is very useful. For example, we are doing some file operations, where i have 
opened a file, if the file is opened, it will locked for editing the file, lock is removed only when 
we close the file. So we need to close the file even if the exception is raised or not. 
Example for Structured Exception Handling 
Public Function Structeddivide(ByVal a As Integer, ByVal b As Integer) As Integer 
Try 
Return a / b 
Catch ex As OverflowException 
MsgBox("Cannot divide by zero") 
Return -1 
Finally 
MsgBox("Calculation over") 
End Try 
End Function 
New exception from SqlDataReader. In the System.Data.SqlClient namespace, you construct a 
SqlDataReader with code similar to this: 
Dim myCommand As New SqlCommand(mySelectQuery, myConnection) 
myConnection.Open() 
Dim myReader As SqlDataReader 
myReader = myCommand.ExecuteReader() 
In 1.0 this code would succeed, even if the command was chosen as the deadlock victim by SQL 
Server (in the case where there's a locking issue with another connection, of course). You 
wouldn't get a SqlException back until you actually tried to read data from the SqlDataReader. 
In 1.1 the ExecuteReader() method can now throw a SqlException. If you've got error handling 
that depends on only seeing this particular exception when you're actually reading data, you'll 
need to revise the code to move up. 

 
QUESTION 35: 
 
You are an application developer for Certkiller .com. You are developing an application 
that stores configuration data in a file named C:\ Certkiller \Persistence.config. This file is the 



070-330 

Actualtests.com - The Power of Knowing 
 

only file your application will access. 
The design document for the application specifies the following two requirements: 
1. All authenticated users are allowed to view the contents of the configuration data file. 
2. Only members of a group named Managers are allowed to modify the data in the 
configuration data file. 
You need to ensure that the file can be accessed according to these requirements. 
Which two actions should you perform? (Each correct answer presents part of the solution. 
Choose two) 
 
A. Apply a discretionary access control list (DACL) entry on the file. 
Use the DACL to grant Read permission to all authenticated users, and to grant Write permission 
to the Managers group. 
B. Apply a discretionary access control list (DACL) entry on the file. 
Use the DACL to grant Read permission to the Everyone group, and to grant Write permission to 
the Managers group. 
C. Add the following code segment to the application before accessing the file. 
Dim Wp As New WindowsPrincipal(WindowsIdentity.GetCurrent()) 
Dim Manager As Boolean 
Manager = WP.IsInRole("Managers") 
Dim Fp As FileIOPermission 
Dim ConfigFile As String 
ConfigFile = "C:\ Certkiller \Persitsance.config" 
If Manager Then 
Fp = New FileIOPermission(FileIOPermissionAccess.AllAccess, 
ConfigFile) 
Else 
Fp = New FileIOPermission8FileIOPermissionAccess.Read, 
ConfigFile) 
End If 
Fp.PermitOnly() 
D. Add the following code segment to the application before accessing the file. 
Dim Wp As New WindowsPrincipal(WindowsIdentity.GetCurrent()) 
If Wp.IsInRole("Managers") Then 
Dim Anon As WindowsIdentity 
Anon = WindowsIdentity.GetAnonymous() 
Anon.Impersonate() 
End If 
E. Require users to enter a password that is shared among members of the Managers group 
whenever the application opens the file for writing. 
 
Answer: A, C 
Explanation 
DACLs and ACEs 
If a Windows object does not have a discretionary access control list (DACL), the system 
allows everyone full access to it. If an object has a DACL, the system allows only the access 
that is explicitly allowed by the 



070-330 

Actualtests.com - The Power of Knowing 
 

access control entries (ACEs) in the DACL. If there are no ACEs in the DACL, the system does 
not allow access to anyone. Similarly, if a DACL has ACEs that allow access to a limited set of 
users or groups, the system implicitly denies access to all trustees not included in the ACEs. 
in most cases, you can control accessto an object by ussing access-allowed ACEs;you do not 
need to explicitly deny access to an object. The exception is when an ACE allows access to a 
group and you want to deny access to a member of the group. To do this, place an access-denied 
ACE for the user in the DACL ahead of the access-allowed ACE for the group. Note that the 
order of the ACEs is important because the system reads the ACEs in sequence until access is 
granted or denied. the user's access-denied ACE must appear first; otherwise, when the system 
reads the group's access allowed ACE, it will grant access to the restricted user. 
The following illustration shows a DACL that denies access to one user and grants access to two 
groups. The members of Group A get Read, Write, and Execute access rights by accumulating 
the rights allowed to Group A and rights allowed to Everyone. The exception is Andrew, who is 
denied access by the access-denied ACE in spite of being a member of the Everyone Group. 

 
FileIOPermission Class 
Controls the ability to access files and folders. This class cannot be inherited. 
For a list of all members of this type, see FileIOPermission Members. 
System.Object 
System.Security.CodeAccessPermission 
System.Security.Permissions.FileIOPermission 
<Serializable>NotInheritable Public Class FileIOPermission Inherits 
CodeAccessPermission Implements IUnrestrictedPermissionRemarksThis permission 
distinguishes between the following four types of file IO access provided by 
FileIOPermissionAccess: 
* Read: Read access to the contents of the file or access to information about the file, such as its 
length or last modification time. 
* Write 
: Write access to the contents of the file or access to change information about the file, such as its 
name. Also allows for deletion and overwriting. 
* Append: Ability to write to the end of a file only. No ability to read. 
* PathDiscovery: Access to the information in the path itself. This helps protect sensitive 
information in the path, such as user names, as well as information about the directory structure 
revealed in the path. This value does not grant access to files or folders represented by the path. 
All these permissions are independent, meaning that rights to one do not imply rights to another. 
For example, Write permission does not imply permission to Read or Append. If more than one 
permission is desired, they can be combined using a bitwise OR as shown in the code example 



070-330 

Actualtests.com - The Power of Knowing 
 

that follows.file permission is defined in terms of canonical absolute path ;calls should always 
be made with canonical file paths. 
FileIOPermission describes protected operations on files and folders. The File class helps 
provide secure access to files and folders. The security access check is performed when the 
handle to the file is created. By doing the check at creation time, the performance impact of the 
security check is minimized. Opening a file happens once, while reading and writing can happen 
multiple times. Once the file is opened, no further checks are done. If the object is passed to an 
untrusted caller, it can be misused. For example, file handles should not be stored in public 
global statics where code with less permission can access them. 
FileIOPermissionAccessspecifies actions that can be performed on the file or folder. In 
addition, these actions can be combined using a bitwise OR to form complex instances. 
Access to a folder implies access to all the files it contains, as well as access to all the files and 
folders in its subfolders. For example, Read access to C:\folder1\ implies Read access to 
C:\folder1\file1.txt, C:\folder1\folder2\, C:\folder1\folder2\file2.txt, and so on. 
CAUTION Unrestricted FileIOPermission grants permission for all paths within a file system, 
including multiple pathnames that can be used to access a single given file. To Deny access to a 
file, you must Deny all possible paths to the file. For example, if \\server\share is mapped to the 
network drive X, to Deny access to \\server\share\file, you must Deny\\server\share\file, X:\file 
and any other path that you can use to access the file. A better technique to deal with multiple 
paths is to use a combination of PermitOnly and Deny. In the above example you can 
PermitOnly\\server\share, then Deny\\server\share\file, eliminating alternate paths completely. 
For more information on this subject and the use of PermitOnly with Deny, see Canonicalization 
Problems Using Deny in the Deny topic. 
NotePaths of the form \\server\share\bogusfolder\..\file are converted into the canonical form 
\\server\share\file by the security system so you only need to Deny the canonical path, 
\\server\share\file, and do not need to account for the syntactical variations that can be used to 
specify the same path. 
Note Deny is most effective when used with the Windows NTFS file system. NTFS offers 
substantially more security than FAT32. For details on NTFS, see the Windows documentation. 
ExampleThe following illustrates code that uses FileIOPermission. After the following two 
lines of code, the object f 
represents permission to read all files on the client computer's local disks. 
Dim f As New FileIOPermission(PermissionState.None)f.AllLocalFiles = 
FileIOPermissionAccess.ReadFileIOPermission.AllFiles Property 
Gets or sets the permitted access to all files 
Public Property AllFiles As FileIOPermissionAccessProperty Value The set of file I/O flags for 
all files. 
Remarks This property gets or sets the permitted access to all files on the local computer and 
network drives. 
An individual FileIOPermissionAccess value can be checked for using a bitwise AND 
operation. 

 
QUESTION 36: 
 
You are an application developer for Certkiller .com. You are developing a Windows 
Service application. Your user account is a member of only the Users group on your 



070-330 

Actualtests.com - The Power of Knowing 
 

computer. A written company policy states that developers are not allowed to log on by 
using an account that has more authority then is needed. 
You need to develop and debug the application. 
What should you do? 
 
A. Modify the application to run the Microsoft Visual Studio .NET debugger with the FullTrust 
permission by using code access security policy. 
B. Set the discretionary access control list (DACL) permissions on the executable file for the 
application to grant your user account Full Control permission for the executable file. 
C. Create a user account that is a member of the Debuggers Users group. 
Use this account for debugging. 
D. Start the development environment from the command line by running the runas command 
and specifying an account in the Administrators group. 
 
Answer: C 
Explanation 
Security is important. No one argues with this and everyone spends a lot of time thinking about 
security issues, security bugs, and malicious users. However, very few people are willing make 
the effort to eradicate the largest single reason that e-mail viruses and cracks in general are so 
dangerous: everyone logs in as a user who is a member of the local Administrators group, and 
most services run as Administrators. 
The principle of "least privilege" states that running with the minimal set of rights needed to 
perform an action minimizes the damage done when something bad happens, whether it is a 
corrupt attachment in an e-mail received from Outlook, or a service that has a security risk. By 
running programs without Administrative privileges whenever possible, you ensure a more 
secure environment. 
Currently available software often requires elevated privileges in order to run correctly. To end 
this situation, developers must take the first step and stop running as administrators. Then, if we 
all consistently log in, develop, and test applications as non-administrative users, the software 
we produce is more likely to be executable without artificial requirements of elevated privileges. 
Until developers fix the software they are writing and shipping, users will never be able to run in 
a secure environment, too! 
Both Web applications and Web services can be easily debugged with Visual Studio .NET. By 
default, pressing F5 within a Web services project will display a simple test page, through which 
you can call the Web services you have developed. Debugging this code is simple. Just set your 
breakpoints in your Web service code and invoke the method through the test page. Your 
breakpoints will be hit as the Web method is invoked. 
You can also step into an ASP.NET Web service from an application written for the runtime. To 
do this, make sure you have added the account used to run ASP.NET (typically ASPNET) to the 
Debugger Users group on your machine. Then start debugging the Web or client application. 
When you reach the line that makes the call into the Web service, step into the function call 
using the Step Into command in the debugger. In the background, the debugger will 
automatically step into the Web service for you. 
5 permission levels, current code sets the highest first before evaluating the other levels and 
only evaluates levels for Editors and Reviewers. Correct the code in accordance with the 
permission matrix and improve security. 



070-330 

Actualtests.com - The Power of Knowing 
 

Value Permission Used for group 
      
0 None All except Reviewers, 
    Editors and Admins 
1 Read Only Reviewers, Editors and 
    Admins 
2 Write Editors and Admins 
3 Read and Write Editors and Admins 
4 Read, Write and delete Admins 
     

 
QUESTION 37: 
 
You are an application developer for Certkiller .com. You are conducting a code review of 
an application that was developed by another developer. The application declares a 
variable named Certkiller Permissions. The value of this variable indicates which 
permissions a user has for the application. Each value represents a specific permission or 
set of permissions, and user groups are permitted to have specific permissions. The 
permissions and groups are shown in the following table. 
Value Permission Used for group 
0 None All except Reviewers, 
    Editors, and Admins 
1 Read only Reviewers, Editors, and 
    Admins 
2 Write Editors and Admins 
3 Read and write Editors and Admins 
4 Read, write, and delete Admins 
     

The application stores the current user's group name in a variable named strGroup. Each 
user can belong to only one group. The application sets the value of Certkiller Permissions 
as shown in the following code segment. 
Certkiller Permissions = 4 
If strGroup = "Editors" Then 
Certkiller Permissions -= 1 
End If 
If strGroup = "Reviewers" Then 
Certkiller Permissions -= 3 
End If 
You need to improve the security of this code segment as much as possible while 
maintaining its functionality. You decide to replace the existing code segment. 
Which code segment should you use? 
 
A. Certkiller Permissions = 4 



070-330 

Actualtests.com - The Power of Knowing 
 

If strGroup <> "Admins" Then 
Certkiller Permissions -= 1 
End If 
If strGroup <> "Editors" Then 
Certkiller Permissions -= 2 
End If 
If strGroup <> "Reviewers" Then 
Certkiller Permissions -= 1 
End If 
B. Certkiller Permissions = 0 
If strGroup = "Admins" Then 
Certkiller Permissions = 4 
End If 
If strGroup = "Editors" Then 
Certkiller Permissions = 3 
End If 
If strGroup = "Reviewers" Then 
Certkiller Permissions = 1 
End If 
C. Certkiller Permissions = 1 
If strGroup = "Admins" Then 
Certkiller Permissions += 3 
End If 
If strGroup = "Editors" Then 
Certkiller Permissions += 2 
End If 
D. Certkiller Permissions = 1 
Select Case strGroup 
Case "Admins" 
Certkiller Permissions = 4 
Case "Editors" 
 
Answer: B 
Explanation 
All access must be denied by default to ensure that permissions are evaluated appropriately. 
Explicit deny followed by evaluated allows. 
Assignment Operators: =, +=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |= 
assignment-expression : 
conditional-expression 
unary-expression assignment-operator assignment-expression 
An assignment operation assigns the value of the right-hand operand to the storage location 
named by the left-hand operand. Therefore, the left-hand operand of an assignment operation 
must be a modifiable l-value. After the assignment, an assignment expression has the value of 
the left operand but is not an l-value. The assignment-operator is one of the following: 

Operator Operation Performed 



070-330 

Actualtests.com - The Power of Knowing 
 

= Simple assignment 
*= Multiplication assignment 
/= Division assignment 
%= Remainder assignment 
+= Addition assignment 
-= Subtraction assignment 
<<= Left-shift assignment 
>>= Right-shift assignment 
&= Bitwise-AND assignment 
|= Bitwise-inclusive-OR assignment 
^= Bitwise-exclusive-OR assignment 
    

Example 
In the following example, the addition assignment operator (+=) is used to add 3 to nNumber: 
// Example of the addition assignment operator 
int nNumber=1; 
nNumber+=3\\nNumber now is 4 

 
QUESTION 38: 
 
You are an application developer for Certkiller , You develop an ASP.NET application that 
uses a database to keep track of hours worked by each employee. The application stores the 
account name of the interactive user in a variable named Certkiller Name. The application 
uses the value of Certkiller Name and data entered by each user to record the user name 
and hours worked. 
The application is configured to use Integrated Windows authentication in IIS. The 
Web.config file has Windows authentication configured and impersonation enabled. 
During a security review, you find out that the application is running under a user context 
that has more permissions than necessary. 
You need to increase the security of the application while maintaining current 
functionality. 
What should you do? 
A. 
Ask a network administrator to enable basic authentication for the application in IIS and prompt 
the user to enter the user's user name and password. 
B. Ask a network administrator to enable digest authentication for the application in IIS and 
prompt the user to enter the user's user name and password. 
C. Change the Web.config file to set impersonation to false. 
Add the following code to populate the Certkiller Name variable with the user name of the 
interactive user. 
Dim Certkiller Name As String 
Certkiller Name = HttpContext.Current.User.Identity.Name.ToString() 
D. Change the Web.config file to set impersonation to false. 



070-330 

Actualtests.com - The Power of Knowing 
 

Add the following code to populate the Certkiller Name variable with the user name of the 
interactive user. 
Dim userIdentity As WindowsIdentity 
 
Answer: C 
Explanation 
Principal objects implement the IPrincipal interface and represent the security context of the user 
on whose behalf the code is running. The principal object includes the user's identity (as a 
contained IIdentity object) and any roles to which the user belongs. 
ASP.NET provides the following principal and identity object implementations: 
* WindowsPrincipal and WindowsIdentity objects represent users who have been authenticated 
with Windows authentication. With these objects, the role list is automatically obtained from the 
set of Windows groups to which the Windows user belongs. 
* GenericPrincipal and GenericIdentity objects represent users who have been authenticated 
using Forms authentication or other custom authentication mechanisms. With these objects, the 
role list is obtained in a custom manner, typically from a database. 
* FormsIdentity and PassportIdentity objects represent users who have been authenticated with 
Forms and Passport authentication respectively. 
The following tables illustrate, for a range of IIS authentication settings, the resultant identity 
that is obtained from each of the variables that maintain an IPrincipal and/or IIdentity object. 
The following abbreviations are used in the table: 
* HttpContext = HttpContext.Current.User, which returns an IPrincipal object that contains 
security information for the current Web request. This is the authenticated Web client. 
* WindowsIdentity = WindowsIdentity.GetCurrent(), which returns the identity of the 
security context of the currently executing Win32 thread. 
* Thread = Thread.CurrentPrincipal which returns the principal of the currently executing .NET 
thread which rides on top of the Win32 thread. 
Table 1.IIS anonymous authentication 
  
Web.config Settings Variable Location Resultant Identity 
<identity HttpContext - 
impersonate="true"/> WindowsIdentity   
<authentication Thread MACHINE\IUSR_MACHINE 
mode="Windows" />     
    - 
<identity HttpContext - 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread - 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity   
<authentication Thread MACHINE\IUSR_MACHINE 
mode="Forms" />     
    Name provided by user 
<identity HttpContext Name provided by user 



070-330 

Actualtests.com - The Power of Knowing 
 

impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

Table 2.IIS basic authentication 

Web.config Settings Variable Location Resultant Identity 
<identity HttpContext Domain\UserName 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Domain\UserName 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Name provided by user 
mode="Forms" />     
<identity HttpContext Name provided by user 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

Table 3.IIS digest authentication 

Web.config Settings Variable Location Resultant Identity 
<identity HttpContext Domain\UserName 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Domain\UserName 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Name provided by user 
mode="Forms" />     
<identity HttpContext Name provided by user 



070-330 

Actualtests.com - The Power of Knowing 
 

impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

Table 4: IIS integrated Windows 

Web.config Settings Variable Location Resultant Identity 
<identity HttpContext Domain\UserName 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Domain\UserName 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Name provided by user 
mode="Forms" />     
<identity HttpContext. Name provided by user 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

HttpContext.User Property 
Gets or sets security information for the current HTTP request. 
Public Property User As IPrincipalProperty Value 
Security information for the current HTTP request. 
RemarksSetting this property requires the ControlPrincipal flag to be set in Flags. 
The HttpContext.User property provides programmatic access to the properties and methods of 
the IPrincipal interface. Because ASP.NET pages contain a default reference to the System.Web 
namespace (which contains the HttpContext class), you can reference the members of 
HttpContext on an .aspx page without the fully qualified class reference to HttpContext. For 
example, you can use just User.Identity.Nameto get the name of the user on whose behalf the 
current process is running. If you want to use the members of IPrincipal from an ASP.NET 
code-behind module, however, you must include a reference to the System.Web namespace in 
the module and also fully qualify the reference to the currently active request/response context 
and the class in System.Web you want to use. For example, in a code-behind page you must 
specify the full name HttpContext.Current.User.Identity.Name. 

 



070-330 

Actualtests.com - The Power of Knowing 
 

QUESTION 39: 
 
You are an application developer for Certkiller .com. You are conducting a code review of 
an application that updates a Microsoft SQL Server database named Payroll. This 
database is used by other applications. The application contains the following code 
segment. 
Public Sub calculateAndStore(ByVal Conn As SqlConnection, _ 
ByVal ID As String. ByVal Bonus As String, ByVal Salary As 
String) 
Salary = Convert.ToString(Convert.ToDecimal(Salary) * 1.05) 
Bonus = Convert.ToString(Convert.ToDecimal(Salary) * 0.05) 
If ID.Length = 0 Then 
Throw New ApplicationException("Error" - Empty ID") 
End If 
Dim NewId As String 
NewID = "ID-" & ID 
Dim StrUpdate As String 
StrUpdate = "UPDATE Payroll SET EmployeeID = '" & NewID & _ 
"', Bonus = '" & Bonus & "', Salary = '" & Salary & "' " & _ 
"WHERE EmployeeID='" & ID & "'" 
Dim Cmd As New SqlCommand(StrUpdate, Conn) 
Cmd.Connection.Open() 
Cmd.ExecuteNonQuery() 
End Sub 
The values in the string variables named ID, Bonus, and Salary are contained in the 
Payroll database. The purpose of the code segment is to calculate new values for ID, Bonus, 
and Salary, and to update those values in the Payroll database. 
You need to improve the security of this application. 
What should you do? 
 
A. Validate the new Salary value is within the range for the data type in the SQL Server 
database. 
B. Validate the contents of the ID value before updating it in the SQL Server database. 
C. Validate the length of the ID value before updating it in the SQL Server database. 
D. Enclose the body of the function with a Try-Catch block. 
 
Answer: D 
Explanation 
There are several things worrisome about this question. Since all input must be considered evil 
until otherwise proven, even input from and passed by applications, there must be a validation 
step used at every opportunity. This will increase the code segment and the application will take 
a perceived performance hit. However, this is still better than taking the chance that the data 
being used or passed has not been manipulated. Parameterized stored procedures or 
parameterized SQL statements should be used instead of dynamic SQL. Since the information is 
being pulled from the database, we have to assume that earlier processes in the application have 
handled the scrubbing and validation of the data during the original data entry or it should not be 



070-330 

Actualtests.com - The Power of Knowing 
 

there. However, a less than trustworthy database administrator could still manipulate the data 
anytime and the database could have been compromised by some other means. 

 
QUESTION 40: 
 
You are an application developer for Certkiller .com. You are developing an application 
that includes administrative features that could destroy important information if used 
incorrectly. 
You need to ensure that only members of the Administrators group can use or discover the 
administrative features. You need to achieve this goal while minimizing the impact on 
users. 
Which two actions should you perform? (Each correct answer presents part of the solution. 
Choose two) 
 
A. Disable the menu choices for all administrative features if the user is not a member of the 
Administrators group. 
B. Remove the menu choices for all administrative features if the user us not a member of the 
Administrators group. 
C. Throw an exception at the start of each administrative feature if the user is not a member of 
the Administrators group. 
D. Require users to provide an administrator password before each execution of administrative 
features in the application. 
 
Answer: B, C 
Explanation 
It is easier to not give a user the option to to perform a particular function than just to disable it. 
Disabling an option still would reveal that it is there and make the curious and/or the less than 
trustworthy look for ways to activate or bypass it. If it is not there, there is less of a chance that 
curiosity will be raised to look for it. If the aforementioned types do manage to manipulate the 
application and discover the feature a check needs to be done to ensure they have the appropriate 
permissions to use them. Having users (the administrators are users) enter a password before 
using every administrative feature is not minimizing the impact, though as a third layer this 
would be recommended in a highly secure environment. In highly secure environments, usability 
and convenience are sacrificed for security. 

 
QUESTION 41: 
 
You are an application developer for Certkiller .com. You are conducting a code review of 
an assembly written by another developer. The assembly is named Certkiller Assembly.exe. 
The assembly is for an application that accesses data in a Microsoft SQL Server database. 
All users of the application have access to the database by using their Microsoft Windows 
user accounts. 
The assembly contains the following code segment. 
Dim userid As String 
Dim password As String 
userid = "sa" 



070-330 

Actualtests.com - The Power of Knowing 
 

password = "" 
Dim sqlConnection As New SqlConnection 
Dim connectionString As String 
connectionString = "data source= Certkiller server" 
connectionString &=  ";initial catalog =my database" 
ConnectionString&=:;user id ="&userid 
ConnectionString &=";password ="& password  
sqlConnection.ConnectionString = connectionString 
sqlConnection.Open() 
You need to improve the security of the code segment. 
What should you do? 
 
A. Replace the code segment with the following code segment. 
Dim sqlConnection As New SqlConnection 
Dim connectionString As String 
connectionString = "data source= Certkiller server" 
ConnectionString &=";integrated security =SSPI 
ConnectionString &=initial catalog =my database 
sqlConnection.ConnectionString = connectionString 
sqlConnection.Open() 
B. Replace the code segment with the following code segment. 
Dim sqlConnection As SqlConnection 
Dim connectionString As String 
connectionString = _ 
"data source=Certkillersever;initial catalog=my database ;user id =sa; password=;"  
sqlConnection.ConnectionString = connectionString 
sqlConnection.Open() 
C. Run the caspol.exe -resolveperm Certkiller Assembly.exe command from the command line. 
D. Run the permview /decl Certkiller Assembly.exe command from the command line. 
 
Answer: B 
Never use the SQL default administrative account 'SA' and a blank password "", for any sort of 
access. This account has all access to all databases regardless of who or what created it as well as 
can be used to take complete control of the machine and even the network. SQL has hundreds of 
extended stored procedures (XP_???) of them xp_cmd can be use to elevate permissions well 
beyond what is needed and be used to compromise almost every aspect of the system and the 
network. 
Security Recommended Practices 
Microsoft recommends the following practices to help you protect your data and applications 
from malicious users and accidental user actions. 
Notification Services Security Practices* Run the NS$instance_name service under a weak 
domain or local account. Do not use the LocalSystem or NetworkService service account or any 
account in the Administrators group. 
However, if you are using a delivery protocol that requires the account that the service runs 
under to have additional privileges, you must use higher privileges. For example, sending 
notifications using an Internet Information Services (IIS) SMTP server requires the account 



070-330 

Actualtests.com - The Power of Knowing 
 

under which the service runs to be a member of the local Administrators group. 
* Ensure that the password used by the service account is a strong password. For more 
information about strong passwords, see "Creating Strong Passwords" in the Microsoft Windows 
documentation. 
* Ensure that all code run by the NS$instance_name service, such as custom event providers, 
content formatters, and protocols, is from a trusted source. Notification Services assumes that 
code listed in the application definition file (ADF) comes from a trusted source. 
* Secure all folders containing configuration files or application data. For more information 
about securing files and folders, see File and Folder Security. 
SQL Server Security Practices* When installing SQL Server, never allow a blank sa 
password, even if you select the integrated security mode. This guarantees that if the 
security mode changes to mixed mode, the sa account will still have a password. 
* Use Windows Authentication whenever possible. Windows Authentication provides advanced 
security features, such as policies for password length, complexity, and expiration. Note that if 
the NS$instance_name service uses a SQL Server user name and password to connect to SQL 
Server, this user name and password are encrypted and stored in the registry. 
* If you use SQL Server Authentication, use strong passwords for the SQL Server login accounts 
and change the passwords periodically. 
* Do not grant unnecessary permissions to the public role in each database. The public role 
is a special database role to which every database user belongs, and cannot be dropped 
from the database. Notification Services does not use the public role. 
* Do not grant database access to the guest user account. The guest user account allows a 
SQL Server login account that does not have a database user account to access a database. 
* Consider encrypting the database files using NTFS file encryption. This can decrease 
performance, so you must weigh optimal performance against file security. 
Network Communications Security Practices* To reduce the possibility of intruders viewing data 
as it is being transferred between Notification Services and the database, use encrypted 
communication between client applications and SQL Server. For more information, see "Using 
Encryption Methods" in SQL Server Books Online. 
* If you are using an HTTP protocol to post data to a Web server, and if the Web server supports 
SSL, post the notification using an address that starts with https://. This form of address encrypts 
the data that is sent to the Web server. 
Physical Security PracticesEnsure that your servers are located in an area that is adequately 
secured. If a malicious user can physically access the server, the server is not secure. 
Database Security 
One of the most common scenarios for a distributed application involves reading and writing 
data on a remote database. The dilemma that arises is how to do so securely while maintaining 
application scalability. Where you choose to manage security in your application will greatly 
impact, either negatively or positively, the scalability of your application. 
To achieve scalability using database connection pooling foregoes having the database manage 
security. This is because database connection pooling requires the connection string be identical 
to pool connections. Therefore, you must manage security elsewhere. If you must track database 
operations on per user basis, consider adding a parameter for user identity to each operation and 
manually log user actions in the database. 
Following the advice above, another issue is how to store the database connection string, which 
typically contains security credentials, so multiple users can access it without compromising 



070-330 

Actualtests.com - The Power of Knowing 
 

security. Most sample applications demonstrate storing the connection string in the Web.config 
or global.asax files. However, because these files are plain text files that have limited security, it 
is not the best location for storing this information. Should an intruder compromise your Web 
server's security, these files would be easily accessible. Here are just a few alternatives: 
* If using the Web.config file, store the connection string encrypted and then decrypt the 
connection string in your application code when needed. 
* Build a COM+ application using the ServicedComponent Class and store the connection string 
in the construct string for that component. 
When storing sensitive information in the constructor string, you should verify the following: 
* Only the appropriate users/groups belong to the Reader role of the System Package. However, 
you must carefully manage COM+ to prevent it from being unable to read its own configuration. 
* You have controlled and audited access to the %windows%\Registration folder, where the 
COM+ configuration database (RegDB) stores its files. 
For more information, see ServicedComponent Class. 
* Use integrated security to make a trusted connection with SQL Server. This makes it possible 
for you to use a connection string that eliminates the need for storing a password in the 
connection string, such as: 
"Data source=my sql sever ;integrated security =SSPI;initial catalog =myDB"there are some 
drawbacks to using integrated security, most of which you can overcome. Because integrated 
security requires a Windows account, it defeats connection pooling if you impersonate each 
authenticated principal using an individual Windows account. However, if you instead 
impersonate a limited number of Windows accounts, with each account representing a particular 
role, you can overcome this drawback. Each Windows account must be a domain account with 
IIS and SQL Server in the same or trusted domains. Alternatively, you can create identical 
(including passwords) Windows accounts on each machine. 
After a typical installation, the default security authentication mode is Windows Authentication 
for SQL Server 2000, which is different from SQL Server 7.0. In SQL Server 7.0, the default 
authentication mode is Mixed (Windows Authentication Mode and SQL Server Authentication). 
Windows Authentication is a better security method because of the additional security features it 
provides, such as secure validation and encryption of passwords, password expiration and 
auditing. For more information, see Authentication Modes. 
If you configure SQL Server to use Windows Authentication, you could create one Windows 
account for read-only operations and another Windows account for read/write operations. You 
then map each Windows account to a SQL Server login and establish the desired permissions. 
Using application logic, you then determine which Windows account to impersonate when 
performing database operations. In SQL Server, you can add any Windows user account as a 
member of a fixed database role. Each member gains the permissions applied to the fixed 
database role. For more information, see Managing Permissions. 
For SQL Server 7.0, integrated security does not work with SQL Server's TCP/IP network 
library, but uses the named pipes network library instead. 
As an added security measure, the ConnectionString property of the SqlConnection object does 
not persist or return the full connection string by default. To do so, you must set Persist Security 
Info to true. 

 
QUESTION 42: 
 



070-330 

Actualtests.com - The Power of Knowing 
 

You are an application developer for Certkiller .com. You are developing a Windows Forms 
application. You deploy a supporting assembly named Certkiller Assembly.dll to the global 
assembly cache. During testing, you discover that the application is prevented from 
accessing Certkiller Assembly.dll. 
You need to ensure that the application can access Certkiller Assembly.dll. 
What should you do? 
 
A. Digitally sign the application by using a digital certificate. 
B. Run the caspol.exe -s on command from the command line. 
C. Run the Assembly Linker to link Certkiller Assembly.dll to the application. 
D. Modify the security policy to grant the application the FullTrust permission. 
 
Answer: B 
Explanation 
By default, assemblies installed in the global assembly cache (GAC) run with Full trust. 
The global assembly cache is a computer-wide storage area for shared assemblies 
. You can install assemblies that need to be shared among multiple applications in the global 
assembly cache. Installing your assemblies into the global assembly cache provides the 
following advantages: 
1. The global assembly cache provides a centralized location for managing assemblies that need 
to be shared among multiple applications. 
2. Assemblies installed into the global assembly cache support side-by-side execution. 
Side-by-side execution occurs when you have multiple versions of the same assembly present in 
the global assembly cache, and different applications need to use the different assembly versions. 
Because all assemblies installed into the global assembly cache must be created with strong 
names, the CLR can differentiate between the versions of a shared assembly, thereby allowing 
the appropriate version to be used by the referencing application. 
3. The global assembly cache provides a version-aware and publisher-aware assembly store. 
However, installing an assembly into the global assembly cache introduces the following issues 
that are not encountered with private assemblies: 
1. Installing an assembly into the global assembly cache requires administrative privileges by 
default, because the physical location of the global assembly cache is a subfolder of the 
Windows directory. 
2. The shared assembly must be created with a strong name. You cannot install assemblies 
without strong names into the global assembly cache because the CLR performs integrity checks 
on all files that make up shared assemblies based on the strong name. The cache performs these 
integrity checks to ensure that an assembly has not been tampered with after it has been created 
(for example, to prevent a file from being changed without the manifest reflecting that change). 
3. You cannot simply copy an assembly into the global assembly cache and have your 
applications use it. The assembly must be installed in the global assembly cache. The preferred 
(and most common) approach for installing an assembly in the global assembly cache is to use 
Windows Installer technology. 
NoteIn a production environment, you should always install assemblies into the global assembly 
cache with some mechanism that can maintain a count of the number of references to that 
assembly. This prevents premature removal of the assembly from the global assembly cache by 
the uninstall routine of another application, which would break your application that relies on 



070-330 

Actualtests.com - The Power of Knowing 
 

that assembly. Windows Installer has very robust reference counting features and is the 
recommended way to install assemblies into the global assembly cache. You can actually install 
an assembly into the global assembly cache without using Windows Installer technology, by 
using the Gacutil.exe utility or by using a drag-and-drop operation to move the assembly into the 
Global Assembly Cache folder in Windows Explorer. However, using drag-and-drop operations 
to move assemble into the globale assemnbly cache not implement any reference counting 
therefore, it should be avoided. If you use the Gacutil.exe tool, you should use the /ir switch, 
which installs assemblies into the global assembly cache with a traced reference. These 
references can be removed when the assembly is uninstalled by using the /ur switch. 
After an assembly is installed into the global assembly cache, you cannot simply copy a new 
version and have your application use that updated assembly. As with all strong-named 
assemblies, applications contain the strong name (complete with version number) of the 
assembly that they reference in their own manifests. Instead of simply copying a new version of 
the strong-named assembly, you can either recompile against the newer version or provide 
binding redirection for the referencing application as well. For shared assemblies that reside in 
the global assembly cache, you can achieve this in a number of different ways: 
1. Redirect assembly versions using publisher policy. You can state that applications should use 
a newer version of an assembly by including a publisher policy file with the upgraded assembly. 
The publisher policy file, which is located in the global assembly cache, contains assembly 
redirection settings. If a publisher policy file exists, the runtime checks this file after checking 
the assembly's manifest and application configuration file. You should use publisher policies 
only when the new assembly is backward compatible with the assembly being redirected. New 
versions of assemblies that claim to be backward compatible can still break an application. When 
this happens, you can use the following setting in the application configuration file to make the 
runtime bypass the publisher policy: . 
2. Redirect assembly versions using your application configuration file. As with strong-named 
private assemblies, you can specify that your application use the newer version of a shared 
assembly by putting assembly binding information in your application's configuration file. 
3. Redirect assembly versions with the machine configuration file. This should not be considered 
as a first choice for most redirection scenarios, because the machine configuration file overrides 
all of the individual application configuration files and publisher policies, and applies to all 
applications. However, there might be rare cases when you want all of the applications on a 
computer to use a specific version of an assembly. For example, you might want every 
application to use a particular assembly version because it fixes a security hole. If an assembly is 
redirected in the machine configuration file, all of the applications using the earlier version will 
use the later version. 
As far as deployment is concerned, updating shared assemblies is more complex than updating 
private assemblies-not only do you need to ensure that the upgraded assembly is installed in the 
global assembly cache, but you also need to ensure that configuration or publisher policy files 
are also deployed. 
Verifying Permissions Granted to Your Assemblies 
After you set security policy, you can verify the permissions that are granted to your assemblies 
by that security policy. The .NET Framework configuration tool contains a wizard that you can 
use to view the permissions given to an assembly by current security policy. 
Code Security and Signing in Components 
As a component author, you have three primary concerns when considering security for your 



070-330 

Actualtests.com - The Power of Knowing 
 

components: 
* To ensure that your code will run wherever it is deployed. 
* To protect your component against unauthorized or malicious use, and in addition, provide 
safeguards that prevent the exploitation of any bugs in your code. 
* To assure the developers and users of your component that your component is authentic, 
originated from you, and can be trusted. 
The .NET Framework security model provides you with the ability to ensure all of these 
requirements and to provide trustworthy, secure code to your clients. 
The common language runtime allows the administrator of a computer to set default permissions 
for that computer. Simply, the administrator decides what unsafe operations can and cannot be 
allowed to proceed. On a high-security computer, this may mean that operations required by 
your component are not allowed to execute. In that case, your component will fail to work 
properly. 
You can address this concern by requesting permissions. Permissions represent potentially 
unsafe actions, such as access to the file system or calling native code. You request permissions 
by adding security attributes to your component. At compile time, these attributes are emitted 
into metadata in the assembly manifest. When the assembly is loaded, the runtime examines the 
permission requests and applies the security policy. If the policy allows the permissions to be 
granted, they will be granted. If policy does not allow the requested permissions to be granted, 
the administrator has the option of revising the policy to allow your component to run. 
Requesting the permissions required for your component to function ensures that every computer 
hosting your component will be fully informed as to the permissions required by the code. For 
details on requesting permissions for your assembly, see Requesting Permissions. For details 
about how to add security attributes to your code, see Adding Security Attributes to 
Components. 
You can protect your component from unauthorized or malicious use by insuring that callers to 
your component have the appropriate permissions to use your component. This can be done 
through imperative security checks, which cause permissions to be checked at run time. Using 
imperative security checks, you are able to create permission objects that safeguard potentially 
misused regions of code. By calling the Demand method of a permission object, you are able to 
verify that all callers to your protected code member have the appropriate permission to access 
it. If a caller attempts to access a protected code member without permission, a 
SecurityException is thrown. For details about how to add imperative security checks, see 
Adding Imperative Security Checks to Components. You can also protect code members using 
security attributes. For details on protecting your code members with security attributes, see 
Adding Security Attributes to Components. 
Code SigningWhen you distribute your component, you will want to be able to assure users that 
you are the author, that the code is safe and can be trusted, and that the identity of the assembly 
can be verified. You accomplish this by signing your code. You can sign an assembly in two 
ways: 
* Assign your assembly a strong name. A strong name consists of the assembly's identity, plus a 
public key and a digital signature. A strong name is guaranteed to be a unique name, and thereby 
ensures the identity of your assembly. For details, see Strong-Named Assemblies. 
Although providing a strong name for your assembly guarantees its identity, it is by no means a 
guarantee that the code can be trusted. Put another way, the strong name uniquely identifies and 
guarantees the identity of the assembly, but does not guarantee that you wrote it. Nevertheless, a 



070-330 

Actualtests.com - The Power of Knowing 
 

trust decision can reasonably be made based on strong-name identity alone, provided that the 
assembly is a well-known assembly. 
* Use a digital certificate, also called signcode. To sign your assembly using signcode, you must 
go to a third-party authority and prove your identity, whereupon you will obtain a digital 
certificate that guarantees you as the originator of the component. For details about strong names 
and signcode, see Assembly Security Considerations. 
Special Considerations for Custom ControlsIt is important to realize that user code that is 
executed by the designer at design time will always run fully trusted, even if the project with the 
user code is located where it would receive less than full-trust at runtime. For example, say you 
create a Custom Control that makes API calls every second, and locate the code on a network 
share. Another developer on the network might incorporate your custom control into his project. 
At design time, the code in the Custom Control will run as fully trusted, and will require no 
additional permissions. There are two important consequences of this: First is the fact that you 
might expose your local machine to a security risk through the network by importing unsecure 
code. This would only be a concern in the case of a malicious user creating a damaging custom 
control, followed by a developer mistakenly adding it to his project. A second concern is that 
applications created by this process may fail to work in a real world environment as a developer 
may be unaware of what additional permissions may need to be granted. 
Code security is a complex and important topic. You are encouraged to make a thorough study 
of it, so that you might better protect yourself and your clients. 
Code Access Security Policy Tool (Caspol.exe) 
The Code Access Security Policy tool enables users and administrators to modify security policy 
for the machine policy level, the user policy level, and the enterprise policy level. 
caspol [options] 
Option Description 
-addfulltrust assembly_file Adds an assembly that implements a 
or custom security object (such as a custom 
-af assembly_file permission or a custom membership 
 condition) to the full trust assembly list for 
 a specific policy level. The assembly_file 
 argument specifies the assembly to add. 
 This file must be signed with a strong 
 name. You can sign an assembly with a 
 strong name using the Strong Name Tool 
 (Sn.exe). 
 Whenever a permission set containing a 
 custom permission is added to policy, the 
 assembly implementing the custom 
 permission must be added to the full trust 
 list for that policy level. Assemblies that 
 implement custom security objects (such 
 as custom code groups or membership 
 conditions) used in a security policy (such 
 as the machine policy) should always be 



070-330 

Actualtests.com - The Power of Knowing 
 

 added to the full trust assembly list. 
 CautionIf the assembly implementing the 
 custom security object references other 
 assemblies, you must first add the 
 referenced assemblies to the full trust 
 assembly list. Custom security objects 
 created using Visual Basic .NET, the 
 Managed Extensions for C++, and JScript 
 reference either Microsoft.VisualBasic.dll, 
 Microsoft.VisualC.dll, or 
 Microsoft.JScript.dll, respectively. These 
 assemblies are not in the full trust 
 assembly list by default. You must add the 
 appropriate assembly to the full trust list 
 before you add a custom security object. 
 Failure to do so will break the security 
 system, causing all assemblies to fail to 
 load. In this situation, the Caspol.exe -all 
 -reset option will not repair security. To 
 repair security, you must manually edit the 
 security files to remove the custom security object.  
  
--s[ecurity] {on | off}  Turns code access security on or off.  
RemarksSecurity policy is expressed using three policy levels: machine policy, user policy, and enterprise 
policy. The set of permissions that an assembly receives is determined by the intersection of the permission sets 
allowed by these three policy levels.Each policy level is represented by a hierarchical structure of code groups. 
Every code group has a membership condition that determines which code is a member of that group. A named 
permission set is also associated with each code group. This permission set specifies the permissions the 
runtime allows code that satisfies the membership condition to have. A code group hierarchy, along with its 
associated named permission sets, defines and maintains each level of security policy. You can use the-user, -
customuser, -machine and -enterprise options to set the level of security policy. For more information about 
security policy and how the runtime determines which permissions to grant to code, see Security Policy 
Management. Caspol.exe Behavior All options except -s[ecurity] {on | off} use the version of the .NET 
Framework that Caspol.exe was installed with. If you run the Caspol.exe that was installed with version X of 
the runtime, the changes apply only to that version. Other side-by-side installations of the runtime, if any, are 
not affected. If you run Caspol.exe from the command line without being in a directory for a specific runtime 
version, the tool is executed from the first runtime version directory in the path (usually the most recent runtime 
version installed). The -s[ecurity] {on | off} option is a computer-wide operation. Turning off code access 
security terminates security checks for all managed code and for all users on the computer. If side-by-side 
versions of the .NET Framework are installed, this command turns off security for every version installed on the 
computer. Although the -list option shows that security is turned off, nothing else clearly indicates for other 
users that security has been turned off. When a user without administrative rights runs Caspol.exe, all options 
refer to the user level policy unless the -machine option is specified. When an administrator runs Caspol.exe, all 
options refer to the machine policy unless the -user option is specified. Caspol.exe must be granted the 



070-330 

Actualtests.com - The Power of Knowing 
 

equivalent of the Everything permission set to function. The tool has a protective mechanism that prevents 
policy from being modified in ways that would prevent Caspol.exe from being granted the permissions it needs 
to run. If you try to make such changes, Caspol.exe notifies you that the requested policy change will break the 
tool, and the policy change is rejected. You can turn this protective mechanism off for a given command by 
using the -force option. The Assembly Linker is used to create assembly manifests. Compilers and development 
environments may already provide this capability, so it is often not necessary to use this tool directly. The 
Assembly Linker will be most useful to developers needing to create a single assembly from multiple 
components files, such as might be produced with mixed-language development. The Assembly Linker is also 
used when adding resources to satellite assemblies. The following command line: * creates satellite .dll 
("WorldCalc.Resources.Dll). * with a German culture ("/c:de"). * links in resources (in 
"MyStrings.de.resources"). * giving them the name "MyStrings.de.resources". * al 
/out:WorldCalc.Resources.Dll /v:1.0.0.0 /c:de /embed:MyStrings.de.resources,MyStrings.de.resources,Private. 
The final parameter indicates whether the resource should be made visible to other assemblies and will normally 
be set to "Private". Security Semantics for Applications Written in Visual J# In the current release, all 
applications or components written using Visual J# must be fully trusted in order to be able to run. If such an 
application or component runs in a code group that has not been granted the FullTrust named permission set by 
the security policy, a security exception is thrown. This applies to new applications written in Visual J# where 
only the .NET Framework class libraries are used, as well as to existing Visual J++ applications upgraded to 
Visual J#. Therefore, consider the following when writing applications using Visual J#: * All applications run 
from the local machine in the MyComputer code group are granted the FullTrust permission set under the 
default security policy of the .NET Framework. Thus, applications run from the local machine cause no issues. 
Applications run from remote locations (such as a network share) in the Internet or Intranet code groups. As 
applications run in these code groups are not granted the FullTrust permission set under .NET Framework 
default security policy, they fail with a security exception. A potential workaround is to make applications or 
components run from remote locations fully trusted. In order to be considered fully trusted by the .NET 
Framework security policy, one of the following must be true: * The component or application has been signed 
with a key pair, and the .NET Framework security policy on the computer has been modified to grant the 
FullTrust named permission set to all components or applications signed with this key pair. * The component or 
application has been signed with an Authenticode certificate, and the .NET Framework security policy on the 
computer has been modified to grant the FullTrust named permission set to all components or applications 
signed with this Authenticode certificate. * The .NET Framework security policy on the computer has been 
modified to grant the FullTrust named permission set to controls downloaded from the Web site (URL) where 
the component or application is hosted. * All managed controls hosted in Internet Explorer run in the Internet or 
Intranet code groups, and therefore fail with a security exception. The same is true when a Visual J# application 
is downloaded and run using the code download feature in Internet Explorer. * When the security policy of the 
MyComputer code group is modified from the default level of FullTrust to a more restricted permission set, 
applications started from the local machine are no longer run.  

 
QUESTION 43: 
 
You are an application developer for Certkiller .com. You develop an ASP.NET Web 
application that is installed on a server named Certkiller 1. Certkiller 1 has IIS 5.0 installed. 
The Web application is configured to use Anonymous authentication in IIS. 
The Web.config file contains the following code segment. 
<authentication mode="Windows" /> 
<identity impersonate="true" /> 



070-330 

Actualtests.com - The Power of Knowing 
 

The Machine.config file contains the following code segment. 
<authentication mode="Windows" /> 
The application implements security based on the following code segment. 
Dim Certkiller Identity As String 
Dim validAccess As Integer 
validAccess = 0 
Certkiller Identity = WindowsIdentity.GetCurrent().Name.ToString() 
If ( Certkiller Identity = " Certkiller 1\ASPNET") Then 
validAccess = 1 
End If 
For testing purposes, you display the value of the validAccess variable in a label. When you 
run the application, you discover that the value of validAccess is 0. 
You need to ensure that validAccess has a value of 1. 
What should you do? 
 
A. Replace the code segment in the Web.config file with the following code segment. 
<authentication mode="Windows" /> 
<identity impersonate="false" /> 
B. Replace the code segment in the Web.config file with the following code segment. 
<authenticate mode="Forms" /> 
<identity impersonate="true" /> 
C. Ask a network administrator to change the authentication mode of the Web application to 
Integrated Windows authentication. 
D. Ask a network administrator to change the authentication mode of the Web application to 
basic authentication. 
 
Answer: A 
Explanation 
Microsoft's Security Architecture provides for 5 Authentication modes in IIS and 4 
Authentication modes in ASP.NET 
These include Anonymous, Basic,Digest,Windows Integrated (Kerberos/NTLM) and Certificate 
authentications for IIS and None, Windows, Forms and Passport for ASP.NET 



070-330 

Actualtests.com - The Power of Knowing 
 

 
For each of the authentication modes in ASP.NET, 'Impersonate' can be set to False or True. 
Setting Impersonate to False results in ASP.NET applications using the default system account 
ASPNET to access resources. Setting Impersonate to True results in ASP.NET using the identity 
passed by IIS(IUSR_machinename , domain\username , etc). 
* HttpContext = This is the authenticated Web client. 
* WindowsIdentity = This is the identity of the security context of the currently executing 
Win32 thread. 
* Thread = This is the identity of the currently executing .NET thread which rides on top of the 
Win32 thread 
Building Secure ASP.NET Applications: Authentication, Authorization, and Secure 
Communication 
Principal objects implement the IPrincipal interface and represent the security context of the user 
on whose behalf the code is running. The principal object includes the user's identity (as a 
contained IIdentity object) and any roles to which the user belongs. 
ASP.NET provides the following principal and identity object implementations: 
* WindowsPrincipal and WindowsIdentity objects represent users who have been authenticated 
with Windows authentication. With these objects, the role list is automatically obtained from the 
set of Windows groups to which the Windows user belongs. 
* GenericPrincipal and GenericIdentity objects represent users who have been authenticated 
using Forms authentication or other custom authentication mechanisms. With these objects, the 
role list is obtained in a custom manner, typically from a database. 
* FormsIdentity and PassportIdentity objects represent users who have been authenticated with 
Forms and Passport authentication respectively. 
The following tables illustrate, for a range of IIS authentication settings, the resultant identity 
that is obtained from each of the variables that maintain an IPrincipal and/or IIdentity object. 
The following abbreviations are used in the table: 
* HttpContext = HttpContext.Current.User, which returns an IPrincipal object that contains 



070-330 

Actualtests.com - The Power of Knowing 
 

security information for the current Web request. This is the authenticated Web client. 
* WindowsIdentity = WindowsIdentity.GetCurrent(), which returns the identity of the 
security context of the currently executing Win32 thread. 
* Thread = Thread.CurrentPrincipal which returns the principal of the currently executing .NET 
thread which rides on top of the Win32 thread. 
Table 1.IIS anonymous authentication 
Web.config Settings Variable Location Resultant Identity 
<identity HttpContext - 
impersonate="true"/> WindowsIdentity   
<authentication Thread MACHINE\IUSR_MACHINE 
mode="Windows" />     
    - 
<identity HttpContext - 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread - 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity   
<authentication Thread MACHINE\IUSR_MACHINE 
mode="Forms" />     
    Name provided by user 
<identity HttpContext Name provided by user 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

Table 2.IIS basic authentication 

Web.config Settings Variable Location Resultant Identity 
<identity HttpContext Domain\UserName 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Domain\UserName 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Name provided by user 
mode="Forms" />     
<identity HttpContext Name provided by user 



070-330 

Actualtests.com - The Power of Knowing 
 

impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

Table 3.IIS digest authentication 

Web.config Settings Variable Location Resultant Identity 
<identity HttpContext Domain\UserName 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Domain\UserName 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Name provided by user 
mode="Forms" />     
<identity HttpContext Name provided by user 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

Table 4: IIS integrated Windows 

Web.config Settings Variable Location Resultant Identity 
<identity HttpContext Domain\UserName 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Domain\UserName 
impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Domain\UserName 
mode="Windows" />     
<identity HttpContext Name provided by user 
impersonate="true"/> WindowsIdentity Domain\UserName 
<authentication Thread Name provided by user 
mode="Forms" />     
<identity HttpContext. Name provided by user 



070-330 

Actualtests.com - The Power of Knowing 
 

impersonate="false"/> WindowsIdentity MACHINE\ASPNET 
<authentication Thread Name provided by user 
mode="Forms" />     
     

The machine configuration file, Machine.config, contains settings that apply to an entire 
computer. This file is located in the %runtime install path%\Config directory. Machine.config 
contains configuration settings for machine-wide assembly binding, built-in remoting channels, 
and ASP.NET. 
 
The configuration system first looks in the machine configuration file for the <appSettings> 
element and other configuration sections that a developer might define. It then looks in the 
application configuration file. To keep the machine configuration file manageable, it is best to 
put these settings in the application configuration file. However, putting the settings in the 
machine configuration file can make your system more maintainable. For example, if you have a 
third-party component that both your client and server application uses, it is easier to put the 
settings for that component in one place. In this case, the machine configuration file is the 
appropriate place for the settings, so you don't have the same settings in two different files. 
ASP.NET configuration, of which security is a part, has a hierarchical architecture. All 
configuration information for ASP.NET is contained in files named Web.config and 
Machine.config. Web.config can be placed in the same directories as the application files. The 
Machine.config file is in the Config directory of the install root. Subdirectories inherit a 
directory's settings unless overridden by a Web.config file in the subdirectory. In a Web.config 
file, there are sections for each major category of ASP.NET functionality. 

 
QUESTION 44: 
 
You are an application developer for Certkiller .com. You develop an application that uses 
an external class library. You run the Permissions View tool on the class library and 
receive the following output. 
Microsoft (R) .NET Framework Permission Requests Viewer. Version 
1.1.4322.753 
Copyright (C) Microsoft Corporation 1998-2002. All rights 
reserved. 
minimal permission set: 
<PermissionSet class="System.Security.PermissionSet" 
version="1"> 
<IPermission 
class="System.Security.Permission.ReflectionPermission, 
mscorlib, Version=1.0.5000.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089" 
version="1" Flags="ReflectionEmit"/> 
<IPermission 
class="System.Security.Permissions.SecurityPermission, 
mscorlib, Version=1.0.5000.0, Culture=neutral, 



070-330 

Actualtests.com - The Power of Knowing 
 

PublicKeyToken=b77a5c561934e089" 
version="1" Flags="SerializationFormatter"/> 
</PermissionSet> 
optional permission set: 
<PermissionSet class="System.Security.PermissionSet" 
version="1" Unrestricted="true"/> 
refused permission set: 
Not specified 
You need to add corresponding attributes in your application. 
Which code segment should you use? 
 
A. <Assembly: ReflectionPermission(SecurityAction.RequestRefuse, 
_ 
ReflectionEmit:=False), _ 
Assembly: SecurityPermission(SecurityAction.RequestRefuse, _ 
SerializationFormatter:=False), _ 
Assembly: PermissionSetAttribute(SecurityAction.RequestOptional, 
Unrestricted:=True)> 
B. <Assembly: ReflectionPermission(SecurityAction.RequestMinimum, 
_ 
ReflectionEmit:=False), _ 
Assembly: SecurityPermission(SecurityAction.RequestRefuse, _ 
SerializationFormatter:=False), _ 
Assembly: PermissionSetAttribute(SecurityAction.RequestRefuse, 
Unrestricted:=True)> 
C. <Assembly: ReflectionPermission(SecurityAction.RequestMinimum, 
_ 
ReflectionEmit:=False), _ 
Assembly: SecurityPermission(SecurityAction.RequestMinimum, _ 
SerializationFormatter:=False), _ 
Assembly: PermissionSetAttribute(SecurityAction.RequestOptional, 
Unrestricted:=True)> 
D. <Assembly: ReflectionPermission(SecurityAction.RequestMinimum, 
_ 
ReflectionEmit:=True), _ 
Assembly: SecurityPermission(SecurityAction.RequestMinimum, _ 
SerializationFormatter:=True), _ 
Assembly: PermissionSetAttribute(SecurityAction.RequestOptional, 
Unrestricted:=True)> 
 
Answer: D 
Explanation 
Reflection emit is a runtime feature that allows code to create dynamic assemblies, modules, and 
types. You can dynamically create instances of these types to use, or you can use reflection emit 
to generate an assembly and persist it to disk as an .exe file or DLL. 
Since you do not necessarily have control over what permissions are assigned to the code you 



070-330 

Actualtests.com - The Power of Knowing 
 

write, the common language runtime provides a mechanism for requesting the permissions that 
you feel your code must have in order to run properly. If the code is not granted the required 
permissions, it will not run. And, because permission requests are stored in an assembly's 
manifest, the end user can run a tool to determine what permissions have been requested by the 
assembly author and then take the appropriate steps to grant those permissions if they need the 
code to run on their machine. 
Three types of permission requests are supported: 
RequestMinimum: The permissions the code must have to run properly. If these permissions 
cannot be granted, the code will not be executed. 
RequestOptional: The permissions that should be granted if allowed by policy. The runtime 
will attempt to execute code even if permissions it requests as optional have not been granted. 
RequestRefuse: The permissions that code should never be granted. Code will not receive these 
permissions, even if they would normally be granted to it. This is an extra precaution you can 
take to prevent your from code being misused. 
Permission requests can only be made in a declarative fashion and must always be at the 
assembly level (the assembly is the unit to which permissions are granted by the security 
system). The following code is a request stating that an assembly must have unrestricted access 
to the file system in order to function. 
[assembly:FileIOPermission(SecurityAction.RequestMinimum, Unrestricted=true)] 
public class FileMover { 
//something interesting 
} 
<Assembly: FileIOPermission(SecurityAction.RequestMinimum, Unrestricted := True)> 
Public Class FileMover 
'something interesting 
End Class 
Several requests of the same type can be made, in which case the final permission set requested 
is the aggregate of all requests of that type. In the example below RequestMinimum is used 
twice with different permissions to state that the assembly must have the ability to use Reflection 
Emit and perform serialization in order for it to function. 
[assembly:ReflectionPermission(SecurityAction.RequestMinimum, ReflectionEmit=true)] 
[assembly:SecurityPermission(SecurityAction.RequestMinimum, SerializationFormatter=true)] 
public class CodeGenerator { 
//something interesting 
} 
<Assembly: ReflectionPermission(SecurityAction.RequestMinimum, ReflectionEmit := True)> 
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, SerializationFormatter := 
True)> 
Public Class CodeGenerator 
'something interesting 
End Class 
The same permission can also appear in requests of different types. For instance, the example 
program at the bottom of this page uses an EnvironmentPermission in each of its three requests 
(Minimum, Optional, and Refuse). This is useful when a permission encompasses a number of 
operations and you want to ensure that your assembly has the ability to perform some of those 
operations while being prevented from performing others. It is important to note that any 



070-330 

Actualtests.com - The Power of Knowing 
 

permission you refuse using RequestRefuse will not be granted to your assembly even if you 
request that same permission using RequestMinimum. 
In addition to requesting individual permissions, entire sets of permissions can be requested in a 
compact fashion. The example below shows two requests: one stating that an assembly must 
have unrestricted access to the file system in order to function and one stating that it will take 
any and all other permissions that the security system is willing to grant it. 
[assembly:FileIOPermission(SecurityAction.RequestMinimum, Unrestricted=true)] 
[assembly:PermissionSet(SecurityAction.RequestOptional, Name="FullTrust")] 
public class FileMover { 
//something interesting 
} 
<Assembly: FileIOPermission(SecurityAction.RequestMinimum, Unrestricted := True)> 
<Assembly: PermissionSet(SecurityAction.RequestOptional, Name := "FullTrust")> 
Public Class FileMover 
'something interesting 
End Class 
The previous example shows how to request a permission set by name, but it is also possible to 
use a custom permission set representing the exact permissions you want. For more information 
on how to do this, search for PermissionSetAttribute in the .NET Framework SDK Reference. 
The SDK provides a tool called PERMVIEW that is useful for verifying that your permission 
requests are correct. Running PERMVIEW on a compiled assembly will read the permission 
requests out of the assembly's manifest and display them as shown below. 
C:\>permview filemover.exe 
Microsoft (R) .NET Framework Permission Request Viewer. Version 1.0.XXXX.0 
Copyright (C) Microsoft Corp. 1998-2001 
minimal permission set: 
<PermissionSet class="System.Security.PermissionSet" 
version="1"> 
<IPermission class="System.Security.Permissions.FileIOPermission" 
version="1" 
Unrestricted="true"/> 
</PermissionSet> 
optional permission set: 
<PermissionSet class="System.Security.PermissionSet" 
version="1" 
Unrestricted="true"/> 
refused permission set: 
Not specified 

 
QUESTION 45: 
 
You are an application developer for Certkiller .com. You are conducting a code review of 
an application that was developed by another developer. The application accesses data that 
is stored in a Microsoft SQL Server database. 
The application contains the following code segment, which encrypts a SQL Server 
connection string. 



070-330 

Actualtests.com - The Power of Knowing 
 

Public Function EncryptData(ByVal strConn As String) As Byte() 
Dim data As Byte() = Encoding.UTF8.GetBytes(strConn) 
Dim csp As New DESCryptoServiceProvider 
Dim ms As New MemoryStream 
ms.Write(csp.Key, 0, csp.KeyLength) 
ms.Write(csp.IV, 0, csp.IV.Length) 
Dim cs As New CryptoStream(ms. csp.CreateEncryptor(), 
CryptoStreamMode.Write) 
cs.Write(data, 0, data.Length) 
cs.FlushFinalBlock() 
Return ms.ToArray() 
End Function 
You need to improve the data encryption in the application. 
Which action or actions should you perform? (Choose all that apply) 
 
A. Add zeros to pad the data array to a multiple of the BlockSize property of the csp variable 
before encrypting. 
B. Encrypting the csp.Key property and the csp.IV property by using the user's public key before 
storing them in the MemortStream object named ms. 
C. Write the csp.Key property and the csp.IV property to the CryptoStream object named cs 
instead of the MemortStream object named ms. 
D. Select a longer key than the default key length for the DESCryptoServiceProvider class. 
 
Answer: C, D 
Explanation 
Encrypting Data 
Symmetric encryption and asymmetric encryption are performed using different processes. 
Symmetric encryption is performed on streams and is therefore useful to encrypt large amounts 
of data. Asymmetric encryption is performed on a small number of bytes and is therefore useful 
only for small amounts of data. 
Symmetric EncryptionThe managed symmetric cryptography classes are used with a special 
stream class called a CryptoStream that encrypts data read into the stream. The CryptoStream 
class is initialized with a managed stream class, a class implements the ICryptoTransform 
interface (created from a class that implements a cryptographic algorithm), and a 
CryptoStreamMode enumeration that describes the type of access permitted to the 
CryptoStream. The CryptoStream class can be initialized using any class that derives from the 
Stream class, including FileStream, MemoryStream, and NetworkStream. Using these classes, 
you can perform symmetric encryption on a variety of stream objects. 
The following example illustrates how to create a new instance of the RijndaelManaged class, 
which implements the Rijndael encryption algorithm, and use it to perform encryption on a 
CryptoStream class. In this example, the CryptoStream is initialized with a stream object called 
MyStream that can be any type of managed stream. The CreateEncryptor method from the 
RijndaelManaged class is passed the key and IV that are used for encryption. In this case, the 
default key and IV generated from RMCrypto are used. Finally, the CryptoStreamMode.Write is 
passed, specifying write access to the stream. 
Dim RMCrypto As New RijndaelManaged()Dim CryptStream As New 



070-330 

Actualtests.com - The Power of Knowing 
 

CryptoStream(MyStream, RMCrypto.CreateEncryptor(RMCrypto.Key, RMCrypto.IV), 
CryptoStreamMode.Write)After this code is executed, any data written to the CryptoStream 
object is encrypted using the Rijndael algorithm. 
Here is a general guideline to help you decide when to use which method 
Symmetric, or secret key, algorithms are extremely fast and are well suited for encrypting large 
streams of data. These algorithms, both encrypt and decrypt data. While these are fairly secure, 
they do have the potential to be broken given enough time, as someone could do a search on 
every known key value combination. Since each of these algorithms uses a fixed key length or 
ASCII characters, it is feasible that a computer program could try every possible combination of 
keys and eventually stumble onto the right one. A common use of these types of algorithms is for 
storing and retrieving connection strings to databases. 
Asymmetric, or public key, algorithms are not as fast as symmetric, but are much harder codes to 
break. These algorithms rely on two keys, one is Private and the other is Public. The public key 
is used to encrypt a message. The Private key is the only one that can decrypt the message. The 
public and private keys are mathematically linked and thus both are needed for this 
cryptographic exchange to occur successfully. Asymmetric algorithms are not well suited to 
large amounts of data due to performance. One common use of asymmetric algorithms is to 
encrypt and transfer to another party a symmetric key and initialization vector. The symmetric 
algorithm is then used for all messages being sent back and forth. 
Hash values are used when you do not wish to ever recover the original value and you especially 
wish for no one else to discover the original value as well. Hashes will take any arbitrary string 
length and hash it to a fixed set of bytes. This operation is one-way, and thus is typically used for 
small amounts of data, like a password. If a user inputs a user password into a secure entry 
screen, the program can hash this value and store the hashed value into a database. Even if the 
database were compromised, no one would be able to read the password since it was hashed. 
When the user then logs into the system to gain entry, the password typed in is hashed using the 
same algorithm, and if the two hashed values match, then the system knows the input value was 
the same as the saved value from before. 
MemoryStream Class 
Creates a stream whose backing store is memory. 
For a list of all members of this type, see MemoryStream Members. 
System.Object 
System.MarshalByRefObject 
System.IO.Stream 
System.IO.MemoryStream 
<Serializable>Public Class MemoryStream Inherits StreamRemarksFor an example of 
creating a file and writing text to a file, see Writing Text to a File. For an example of reading text 
from a file, see Reading Text from a File. For an example of reading from and writing to a binary 
file, see Reading and Writing to a Newly Created Data File. 
The MemoryStream class creates streams that have memory as a backing store instead of a disk 
or a network connection. MemoryStream encapsulates data stored as an unsigned byte array that 
is initialized upon creation of a MemoryStream object, or the array can be created as empty. The 
encapsulated data is directly accessible in memory. Memory streams can reduce the need for 
temporary buffers and files in an application. 
The current position of a stream is the position at which the next read or write operation could 
take place. The current position can be retrieved or set through the Seek method. When a new 



070-330 

Actualtests.com - The Power of Knowing 
 

instance of MemoryStream is created, the current position is set to zero. 
Memory streams created with an unsigned byte array provide a non-resizable stream view of the 
data, and can only be written to. When using a byte array, you can neither append to nor shrink 
the stream, although you might be able to modify the existing contents depending on the 
parameters passed into the constructor. Empty memory streams are resizable, and can be written 
to and read from. 

 
QUESTION 46: 
 
You are an application developer for Certkiller .com. You are implementing an ASP.NET 
Web application that uses Forms authentication. User names and passwords are stored in a 
Microsoft SQL Server database. The application includes the following method, which 
returns a value of True if the user provides a user name and password that are found in the 
database. 
Private Function VerifyPassword(ByVal userName As String, _ 
ByVall password As String) As Boolean 
You configure your application to redirect unauthenticated requests to a page named 
Logon.aspx. This page includes text boxes for entering a user name and password, and 
includes a Logon button. 
You need to write the code to authenticate a user. 
What should you do? 
 
A. Add the following code to the Click event handler for the Logon button. 
If VerifyPassword(txtUserName.Text, txtPassword.Text) Then 
Dim authTicket As FormsAuthenticationTicket = New _ 
FormsAuthenticationTicket(txtUserName.Text, False, 30) 
Dim encTicket As String = 
FormsAuthentication.Encrypt(authTicket) 
Dim authCookie As HttpCookie = _ 
B. Add the following code to the Click event handler for the Logon button. 
If VerifyPassowrd(txtUserName.Text, txtPassword.Text) Then 
FormsAuthentication.Authenticate(txtUserName.Text,txtPassword.Text) 
FormsAuthentication.RedirectFromLoginPage(txtUserName.Text, 
False) 
End If 
C. Add the following code to the Application_OnAuthenticate event handler. 
Dim userName As String = Context.Session("UserName") 
Dim password As String = Context.Session("Password") 
If VerifyPassword(userName, password) Then 
Dim authTicket As FormsAuthenticationTicket = New _ 
FormsAuthenticationTicket(userName, False, 30) 
Dim encTicket As String = 
FormsAuthentication.Encryot(authTicket) 
Dim authCookie As HttpCookie = _ 
New HttpCookie(FormsAuthentication.FormsCookieName, encTicket) 
Response.Cookies.Add(authCookie) 



070-330 

Actualtests.com - The Power of Knowing 
 

FormsAuthentication.RedirectFromLoginPage(userName, False) 
End If 
D. Add the following code to the Application_OnAuthenticate event handler. 
Dim userName As String = Context.Session("UserName") 
Dim password As String = Context.Session("Password") 
 
Answer: A 
Explanation 
FormsAuthentication.RedirectFromLoginPage Method (String, Boolean) 
Redirects an authenticated user back to the originally requested URL. 
Overloads Public Shared Sub RedirectFromLoginPage( _ ByVal userNameAs String, _ 
ByVal createPersistentCookieAs Boolean _ 
A. ParametersuserName 
Name of the user for cookie authentication purposes. This does not need to map to an account 
name and will be used by URL Authorization. 
createPersistentCookie 
Specifies whether or not a durable cookie (one that is saved across browser sessions) should be 
issued. 
RemarksThe RedirectFromLoginPage method redirects to the return URL key specified in the 
query string. For example, in the URL 
http://www.contoso.com/login.aspx?ReturnUrl=caller.aspx, caller.aspx is the return URL that 
RedirectFromLoginPage redirects to. If the return key does not exist, RedirectFromLoginPage 
redirects to Default.aspx. ASP.NET automatically adds the return URL when the browser is 
redirected to the login page specified in the loginUrl attribute in the <forms> Element 
configuration directive. The method issues an authentication ticket and does a SetForms with the 
ticket, using the appropriately configured cookie name for the application as part of the redirect 
response. 
FormsAuthenticationTicket Class 
Provides a means of creating and reading the values of a forms authentication cookie (containing 
an authentication ticket) as used by FormsAuthenticationModule. This class cannot be inherited 

 
QUESTION 47: 
 
You are an application developer for Certkiller .com. You are modifying an existing 
communications application so that the application can be used on the Internet. 
You need to enhance the security of data when it is transmitted by using the application. 
You want to achieve this goal by using the minimum amount of development effort. 
What should you do? 
 
A. Use HTTPS for all exchange of data. 
B. Encrypt the data by using the sender's public key and the recipient's private key. 
C. Encrypt the data by using the sender's private key and the recipient's public key. 
D. Create a key to encrypt data for each exchange between the sender and recipient. 
Share the random key with the recipient. 
Encrypt subsequent data by using the shared random key. 
E. Create a random key to encrypt data for each exchange between the sender and recipient. 



070-330 

Actualtests.com - The Power of Knowing 
 

Encrypt the random key by using the recipient's public key. 
Send the encrypted random key to the recipient. 
Encrypt subsequent data by using the shared random key. 
 
Answer: A 
Explanation 
HTTPS Offers: 
Client-server, end-to-end encryption 
All the HTTP traffic between the client and the server is encrypted, preventing anyone from 
understanding it even if they can intercept it. 
Message Integrity 
Integrity checks ensure that the messages making up the HTTP traffic cannot be altered in 
transit, neither can messages be added or removed from the sequence, without detection. 
Strong authentication of the server 
Simply providing encryption and message integrity gives little security if you don't know who 
the other party in the conversation actually is. With plain HTTP, your only assurance is that your 
browser has probably connected to the host whose name appeared in the URL you followed. 
This may not be the case (for example it is easy to subvert the name-to-address mapping 
process), and in any case it is difficult to tell who is actually operating the server that responds to 
any particular name. It is also fairly easy to mount a 'man in the middle' attack against plain 
HTTP. 
Under HTTPS, all servers offer the browser a cryptographic 'certificate'. These certificates are 
issued by trusted third parties and contain information that identifies the server and the 
organization operating it. 
Optional authentication of the browser user 
Optionally, HTTPS also allows the browser to supply a certificate to the server. This can provide 
strong authentication of the identity of the browser user, but this feature is rarely used, probably 
because of the difficulty of issuing such certificates to all users. Certificates are also large, 
making it difficult for mobile users to have them to hand when needed. 
Embedding certificates in portable tokens is one approach to solving these problems. 

 
QUESTION 48: 
 
You are an application developer for Certkiller .com. You are developing a Windows Forms 
application. Users will run your application from a Web folder on the intranet. The 
application stores configuration information in isolates storage. The application will read 
from the registry if it has the appropriate permission, but the application can run 
successfully without this permission. 
You add the following attribute to the application. 
<Assembly: RegistryPermission(SecurityAction.RequestOptional, _ 
All:="HKEY_CURRENT_USER\Software\ Certkiller \LastRun")> 
When you run the application from the intranet, a SecurityException is throwns. 
You need to modify attributes to indicate the application's exact permission requirements 
and correct the problem that is causing the SecurityException exception. 
What should you do? 
 



070-330 

Actualtests.com - The Power of Knowing 
 

A. Add the following attributes to the assembly. 
<Assembly: 
IsolatedStorageFilePermission(SecurityAction.RequestMinimum, _ 
UsageAllowed:=IsolatedStorageContainment.AssemblyIsolationByUser, 
_ 
UserQuota:=9223372036854775897)> 
Make no change to the RegistryPermission attribute. 
B. Add the following attributes to the assembly. 
<Assembly: 
IsolatedStorageFilePermission(SecurityAction.ReqguestMinimum, _ 
UsageAllowed:=IsolatedStorageContainment.AssemblyIsolationByUser, 
_ 
UserQuota:=9223372036854775807)> 
<Assembly: UIPermission(SecurityAction.RequestMinimum)> 
Replace the RegistryPermission attribute with the following attribute. 
<Assembly: RegistryPermission(SecurityAction.RequestRefuce, _ 
All:="HKEY_CURRENT_USER\Software\ Certkiller \LastRun")> 
C. Remove the RegistryPermission attribute and add the following attribute to the assembly. 
<Assembly: PermissionSet(SecurityAction.RequestMinimum, 
Name:="FullTrust")> 
D. Remove the RegistryPermission attribute and add no new attributes to the assembly. 
 
Answer: B 
Explanation 
Specifies the permitted use of isolated storage. 
<Serializable>Public Enum IsolatedStorageContainment 
RemarksIsolated storage uses evidence to determine a unique storage area for use by an 
application or component. The identity of an assembly uniquely determines the root of a virtual 
file system for use by that assembly. Thus, rather than many applications and components 
sharing a common resource such as the file system or registry, each has its own file area 
inherently assigned to it. 
Three basic isolation scopes are used when assigning isolated storage: 
* User- Code is always scoped according to the current user. The same assembly will receive 
different stores when being run by different users. 
* Assembly 
- Code is identified cryptographically by strong name (for example, Microsoft.Office.* or 
Microsoft.Office.Word), by publisher (based on public key), by URL (for example, 
http://www.fourthcoffee.com/process/grind.htm), by site, or by zone. 
* Domain- Code is identified based on evidence associated with the application domain. Web 
application identity is derived from the site's URL, or by the Web page's URL, site, or zone. 
Local code identity is based on the application directory path. 
For definitions of URL, site, and zone, see UrlIdentityPermission, SiteIdentityPermission, and 
ZoneIdentityPermission. 
These identities are grouped together, in which case the identities are applied one after another 
until the desired isolated storage is created. The valid groupings are User+Assembly and 
User+Assembly+Domain. This grouping of identities is useful in many different applications. 



070-330 

Actualtests.com - The Power of Knowing 
 

If data is stored by domain, user, and assembly, the data is private in that only code in that 
assembly can access the data. The data store is also isolated by the application in which it runs, 
so that the assembly does not represent a potential leak by exposing data to other applications. 
Isolation by assembly and user could be used for user data that applies across multiple 
applications;for example ,license information or a user personal onformation (name, 
authentication credentials, and so on) that is independent of an application. 
IsolatedStorageContainmentexposes flags that determine whether an application is allowed to 
use isolated storage and, if so, which identity combinations are allowed to use it. It also 
determines whether an application is allowed to store information in a location that can roam 
with a user (Windows Roaming User Profiles or Folder Redirection must be configured). 
Members 
  
Member name Description 
AdministerIsolatedStorageByUser Unlimited administration ability for the 
  user store. Allows browsing and deletion 
  of the entire user store, but not read access 
  other than the user's own 
  domain/assembly identity. 
AssemblyIsolationByRoamingUser Storage is isolated first by user and then 
  by assembly evidence. Storage will roam 
  if Windows user data roaming is enabled. 
  This provides a data store for the assembly 
  that is accessible in any domain context. 
  The per-assembly data compartment 
  requires additional trust because it 
  potentially provides a "tunnel" between 
  applications that could compromise the 
  data isolation of applications in particular 
  Web sites. 
AssemblyIsolationByUser Storage is isolated first by user and then 
  by code assembly. Storage is also isolated 
  by computer. This provides a data store 
  for the assembly that is accessible in any 
  domain context. The per-assembly data 
  compartment requires additional trust 
  because it potentially provides a "tunnel" 
  between applications that could 
  compromise the data isolation of 
  applications in particular Web sites. 
DomainIsolationByRoamingUser Storage is isolated first by user and then 
  by domain and assembly. Storage will 
  roam if Windows user data roaming is 
  enabled. Data can only be accessed within 



070-330 

Actualtests.com - The Power of Knowing 
 

  the context of the same application and 
  only when run by the same user. This is 
  helpful when a third-party assembly wants 
  to keep a private data store. 
DomainIsolationByUser Storage is isolated first by user and then 
  by domain and assembly. Storage is also 
  isolated by computer. Data can only be 
  accessed within the context of the same 
  application and only when run by the 
  same user. This is helpful when a 
  third-party assembly wants to keep a 
Leading the way in IT testing and private data store. certification tools, www. Certkiller .com 
None Use of isolated storage is not allowed. 
UnrestrictedIsolatedStorage Use of isolated storage is allowed without 
    

IsolatedStorageFilePermission Class 
Specifies the allowed usage of a private virtual file system. This class cannot be inherited. 
For a list of all members of this type, see IsolatedStorageFilePermission Members. 
System.Object 
System.Security.CodeAccessPermission 
System.Security.Permissions.IsolatedStoragePermission 
System.Security.Permissions.IsolatedStorageFilePermission 
<Serializable>NotInheritable Public Class IsolatedStorageFilePermission Inherits 
IsolatedStoragePermissionRemarksThe common language runtime uses this class to control 
access to isolated storage. 
Isolated storage creates a unique storage area for use by an application or component. It provides 
true isolation in that the identity of an application uniquely determines the root of a virtual file 
system that only that application can access. Thus, each application has its own file area 
inherently assigned to it. This file area is fully isolated from other applications, making it 
essentially private. 
NoteThe Assert method, inherited from CodeAccessPermission.Assert, does not have any effect 
on IsolatedStorageFilePermission. The Assert will be ignored. 

 
QUESTION 49: 
 
You are an application developer for Certkiller .com. Certkiller sells products to business 
partners over the Internet. Partners sometimes claim that they did not place an order that 
the company fulfilled. 
You need to develop a solution that can be used to prove that a partner's orders were 
approved by that partner. You want your solution to be as secure as possible. 
What should you do? 
 
A. Require each partner to identify itself by using an account name. 



070-330 

Actualtests.com - The Power of Knowing 
 

B. Require all orders to be placed at an HTTPS Web site that uses Certkiller 's certificate. 
C. Require partners to digitally sign each order by using a certificate. 
D. Require partners to send an e-mail message to confirm each order. 
 
Answer: C 
Explanation 
A digital signature 
A means for originators of a message, file, or other digitally encoded information to bind their 
identity to the information. The process of digitally signing information entails transforming the 
information, as well as some secret information held by the sender, into a tag called a signature. 
Digital signatures are used in public key environments, and they provide nonrepudiation and 
integrity services. 
It is a way to ensure the integrity and origin of data. A digital signature provides strong evidence 
that the data has not been altered since it was signed and it confirms the identity of the person or 
entity who signed the data. This enables the important security features of integrity and 
nonrepudiation, which are essential for secure electronic commerce transactions. 
Digital signatures are typically used when data is distributed in plaintext, or unencrypted form. 
In these cases, while the sensitivity of the message itself may not warrant encryption, there could 
be a compelling reason to ensure that the data is in its original form and has not been sent by an 
impostor because, in a distributed computing environment, plaintext can conceivably be read or 
altered by anyone on the network with the proper access, whether authorized or not. 
nonrepudiation: 1. The capability, in security systems, that guarantees that a message or data can 
be proven to have originated from a specific person. 2. Assurance the sender of data is provided 
with proof of delivery and the recipient is provided with proof of the sender's identity, so neither 
can later deny having processed the data. 
NonrepudiationNonrepudiation is a method of proving either that a user performed an action 
(such as enrolling in a stock plan or applying for a car loan), or that the user sent or received 
some information at a particular time. This prevents the individual from fraudulently reneging 
ona transaction. By comparison, if you purchase an item, you might have to sign for the item 
upon receipt. If you decide to renege on the deal, the vendor can simply show you the signed 
receipt. 
A comprehensive nonrepudiation plan usually requires authentication, authorization, data 
integrity, and auditing. In addition, nonrepudiation requires a message on the Web page, warning 
that the action the user is about to take is legally binding. This does not make the Web server 
more secure, but it does make Web transactions (such as purchasing an item) more secure. 
Today, electronic nonrepudiation across the Internet is new and there is little in the way oflegal 
precedent. This is sure to change as more business is performed across the Web. 

 
QUESTION 50: 
 
You are an application developer for Certkiller .com. You are developing an application 
that consists of a single Windows Forms assembly. This application accesses a Microsoft 
SQL Server database. Access to this database is critical to the successful operation of your 
application. This application will be distributed throughout the company. 
If the code access security policy prevents the application from running, an administrator 
must reconfigure the code access security policy to grant your assembly the required 



070-330 

Actualtests.com - The Power of Knowing 
 

permissions for your application to run. 
You need to update the application so that an administrator can ascertain the permission 
requirements for the assembly. 
Which attribute should you add to the assembly? 
 
A. <Assembly: SqlClientPermission(SecurityAction.RequestMinimum)> 
B. <Assembly: SqlClientPermission(SecurityAction.RequestOptional)> 
C. <Assembly: AssemblyDescription("SqlClientPermission")> 
D. <Assembly: AssemblyConfiguration("SqlClientPermission")> 
 
Answer: A 
Explanation 
SqlClientPermission Class 
Enables the .NET Framework Data Provider for SQL Server to help ensure that a user has a 
security level adequate to access a data source. 
For a list of all members of this type, see SqlClientPermission Members. 
System.Object 
System.Security.CodeAccessPermission 
System.Data.Common.DBDataPermission 
System.Data.SqlClient.SqlClientPermission 
<Serializable>NotInheritable Public Class SqlClientPermission Inherits DBDataPermission 
RemarksThe IsUnrestricted property takes precedence over the AllowBlankPassword property. 
Therefore, if you set AllowBlankPassword to false, you must also set IsUnrestricted to false to 
prevent a user from making a connection using a blank password. 
SecurityAction Enumeration 
Specifies the security actions that can be performed using declarative security. 
<Serializable>Public Enum SecurityActionRemarksThe following table describes the time that 
each of the security actions takes place and the targets that each supports. 
Declaration of security Time of action Targets supported 
action     
LinkDemand Just-in-time compilation Class, Method 
InheritanceDemand Load time Class, Method 
Demand Run time Class, Method 
Assert Run time Class, Method 
Deny Run time Class, Method 
PermitOnly Run time Class, Method 
RequestMinimum Grant time Assembly 
RequestOptional Grant time Assembly 
RequestRefuse Grant time Assembly 
     

For additional information about attribute targets, see Attribute. 
  

  Member Description 



070-330 

Actualtests.com - The Power of Knowing 
 

name 
Assert   The calling code can access the resource 
    identified by the current permission 
    object, even if callers higher in the stack 
    have not been granted permission to 
    access the resource (see Assert). 
Demand   All callers higher in the call stack are 
    required to have been granted the 
    permission specified by the current 
    permission object (see Security Demands). 
Deny   The ability to access the resource specified 
    by the current permission object is denied 
    to callers, even if they have been granted 
    permission to access it (see Deny). 
InheritanceDemand The derived class inheriting the class or 
    overriding a method is required to have 
    been granted the specified permission. 
LinkDemand The immediate caller is required to have 
    been granted the specified permission. 
    For more information on declarative 
    security and link demands, see Declarative 
    Security Used with Class and Member 
    Scope. 
PermitOnly   Only the resources specified by this 
    permission object can be accessed, even if 
    the code has been granted permission to 
    access other resources (see PermitOnly). 
RequestMinimum The request for the minimum permissions 
    required for code to run. This action can 
    only be used within the scope of the 
    assembly. 
RequestOptional The request for additional permissions that 
    are optional (not required to run). This 
    action can only be used within the scope 
    of the assembly. 
RequestRefuse The request that permissions that might be 
    misused will not be granted to the calling 
    code. This action can only be used within 
    the scope of the assembly. 
     

 



070-330 

Actualtests.com - The Power of Knowing 
 

QUESTION 51: 
 
You are an application developer for Certkiller .com. You are developing a Web service that 
will allow customers to access confidential information about their accounts. Client 
applications that use the Web service will provide an identifier and a password. The Web 
service will verify credentials by using a Microsoft SQL Server database. You must 
minimize the risk that account information can be intercepted during transmission. 
You need to choose an authentication method. 
What should you do? 
 
A. Use Web Service Enhancements for Microsoft .NET (WSE) to implement the WS-Security 
specification. 
B. Require client application to encrypt an identifier and password in the SOAP header of all 
requests. 
C. Use basic authentication over SSL/TLS. 
D. Use Forms authentication over SSL/TLS. 
 
Answer: D 
Explanation 
Secure Sockets Layer / Transport Layer Security (SSL/TLS). This is most commonly used 
to secure the channel between a browser and Web server. However, it can also be used to 
secure Web service messages and communications to and from a database server running 
Microsoft SQL Server 2000. 
Know What to SecureWhen a Web request flows across the physical deployment tiers of your 
application, it crosses a number of communication channels. A commonly used Web application 
deployment model is shown in Figure 1. 

 
Figure 1. A typical Web deployment model 
In this typical deployment model, a request passes through three distinct channels. The 
client-to-Web server link may be over the Internet or corporate intranet and typically uses 
HTTP. The remaining two links are between internal servers within your corporate domain. 
Nonetheless, all three links represent potential security concerns. Many purely intranet-based 
application convey security sensitive data between tiers; for example ,HR and payroll 
applications that deal with sensitive employee data. 
Figure 2 shows how each channel can be secured by using a combination of SSL, IPSec and 
RPC encryption. 

 
Figure 2. A typical Web deployment model, with secure communications 
The choice of technology depends on a number of factors including the transport protocol, end 



070-330 

Actualtests.com - The Power of Knowing 
 

point technologies, and environmental considerations (such as hardware, operating system 
versions, firewalls, and so on). 
SSL/TLSSSL/TLS is used to establish an encrypted communication channel between client and 
server. The handshake mechanism used to establish the secure channel is well documented and 
details can be found in the following articles in the Microsoft Knowledge Base: 
* Q257591, "Description of the Secure Sockets Layer (SSL) Handshake" 
* Q257587, "Description of the Server Authentication Process During the SSL Handshake" 
Q257586, "Description of the Client Authentication Process During the SSL Handshake 

 
QUESTION 52: 
 
You are an application developer for Certkiller .com. You are developing a multithreaded 
application. Some of the application's threads perform maintenance tasks in the 
application's database. These maintenance tasks are performed by dedicated assemblies, 
and the assemblies need to run under different security permissions. The other assemblies 
of the application must not have the different permissions. 
You need to ensure that the application's threads have the correct security permissions. 
You want to achieve this goal without negatively affecting response times for the 
application. 
What should you do? 
 
A. Configure the application to impersonate a user account that has the permissions required by 
the maintenance assemblies. 
B. Configure code access security policies so that the application has the permissions required by 
the maintenance assemblies. 
C. Create a separate application domain for the maintenance assemblies. 
D. Start the maintenance assemblies as separate processes. 
 
Answer: C 
Explanation 
The logical and physical boundary created around every .NET application by the Common 
Language Runtime (CLR). The CLR can allow multiple .NET applications to be run in a single 
process by loading them into separate application domains. The CLR isolates each application 
domain from all other application domains and prevents the configuration, security, or stability 
of a running .NET applications from affecting other applications. Objects can only be moved 
between application domains by the use of remoting. 
Application Domains 
Operating systems and runtime environments typically provide some form of isolation between 
applications. This isolation is necessary to ensure that code running in one application cannot 
adversely affect other, unrelated applications. 
Application domains provide a more secure and versatile unit of processing that the common 
language runtime can use to provide isolation between applications. Application domains are 
typically created by runtime hosts, which are responsible for bootstrapping the common 
language runtime before an application is run. 
Application Domains and Threads 
Application domains form an isolation, unloading, and security boundary for managed code. 



070-330 

Actualtests.com - The Power of Knowing 
 

Threads are the operating system construct used by the common language runtime to execute 
code. At run time, all managed code is loaded into an application domain and is run by a 
particular operating system thread. 
There is not a one-to-one correlation between application domains and threads. Several threads 
can be executing in a single application domain at any given time and a particular thread is not 
confined to a single application domain. That is, threads are free to cross application domain 
boundaries; a new rhread is not created for each application domain 
At any given time, every thread is executing in one application domain. The run time keeps track 
of which threads are running in which application domains. You can locate the domain in which 
a thread is executing at any time by calling the Thread.GetDomain method. 

 
QUESTION 53: 
 
You are an application developer for Certkiller .com. You are developing a library assembly 
that is part of an accounting application. The library includes a serviced component named 
Certkiller lProcessing. The application will use COM+ role-based security to restrict access 
to components. The business rules implemented by the application allow only those users 
who are members of the COM+ role named Payroll to access the Certkiller lProcessing 
component. However, users who are not members of the Payroll role are allowed to access 
other components in the library. 
You need to modify your code to enable role verification and ensure that only members of 
the Payroll role can access the Certkiller lProcessing component. 
Which three actions should you perform? (Each correct answer presents part of the 
solution. Choose three) 
 
A. Add the following attribute to the library assembly. 
<Assembly: ApplicationAccessControl(AccessChecksLevel:= _ 
AccessChecksLevelOption.ApplicationComponent)> 
B. Add the following attribute to the library assembly. 
<Assembly: ApplicationAccessControl(AccessChecksLevel:= _ 
AccessChecksLevelOption.Application)> 
C. Add the following attribute to the Certkiller lProcessing component. 
<ComponentAccessControl()> 
D. Add the following attribute to the Certkiller lProcessing component. 
<PrivateComponent() 
E. Add the following attribute to the Certkiller lProcessing component. 
<SecurityRole("Payroll")> 
F. Add the following attribute to the Certkiller lProcessing component. 
<PrincipalPermission(SecurityAction.Demand, Role:="Payroll")> 
 
Answer: A, E, F 
Explanation 
AccessChecksLevelOption Enumeration 
Specifies the level of access checking for an application, either at the process level only or at all 
levels, including component, interface, and method levels. 
<Serializable>Public Enum AccessChecksLevelOptionB. Members 



070-330 

Actualtests.com - The Power of Knowing 
 

  Member name Description 
Application   Enable access checks only at the process 
    level. No access checks are made at the 
    component, interface, or method level. 
ApplicationComponent Enable access checks at every level on 
    calls into the application. 
     

Implementing COM+ Security from .NETIf you're building a serviced component, you can 
preconfigure much of the COM+ security information using attributes. 
The System.EnterpriseServices.ApplicationAccessControlAttribute class allows you enable 
COM+ security and specifies the COM+ application-level security attributes such as the 
frequency of authentication and the impersonation level. You apply this attribute at the assembly 
level, as shown here: 
/** @assembly ApplicationAccessControlAttribute(true, 
AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent, 
Authentication=AuthenticationOption.Packet, 
ImpersonationLevel=ImpersonationLevelOption.Identify) */The AccessChecksLevelOption, 
AuthenticationOption, and ImpersonationLevelOption enumerations contain values 
corresponding to each of the possible settings that an administrator can select when configuring a 
COM+ application manually. 
To implement COM+ role-based security, you should define roles using SecurityRoleAttribute 
and secure components using ComponentAccessControlAttribute. (You should not use 
PrincipalPermissionAttribute.) You can use the SecurityRoleAttribute class to tag an entire 
assembly, a class, and individual methods. When a role is applied to an assembly, any user in the 
role will have access to every component in the assembly. When applied to a class or method, 
the security role will have access to that class or method only. The following example enables 
access control at the class level for the CakeFactory class, creates a COM+ role called Bakers, 
and then applies this role to the CakeFactory class. An administrator can then populate the 
Bakers role with users by using the Component Services console. (The Bakers role will initially 
be empty.) If you want to create multiple roles, you must apply SecurityRoleAttribute multiple 
times: 
/** @attribute ComponentAccessControlAttribute(true) */ 
/** @attribute SecurityRoleAttribute("Bakers") */ 
public class CakeFactory extends ServicedComponent implements ... 
{ 
}If you examine the serviced component using the Component Services console and look at the 
security settings for the CakeFactory component, you'll see that authorization has been enabled 
and that the Bakers role has been created and applied to the CakeFactory component, as shown 
in Figure 14-20. 



070-330 

Actualtests.com - The Power of Knowing 
 

 
Figure 14-20 The security settings for the CakeFactory component 
To secure a single method, you attach a SecurityRoleAttribute to the method as shown below. If 
you want to apply the same role to several methods, you must repeat the SecurityRoleAttribute 
for each method. 
/** @attribute SecurityRoleAttribute("Master Bakers") */ 
public ICake CreateCake(short size, short filling, short shape) 
{ 
}NOTE: 
If you implement method-level security, the .NET Framework will automatically create an extra 
role called Marshaler and attach it to the IDisposable and IManagedObject interfaces generated 
for the serviced component. This role allows clients to execute the methods defined by these 
interfaces. For example, if users need to execute the Dispose method, you should add them to the 
Marshaler role. 
From our earlier discussions, you should recall that if you do not implement an interface, a 
serviced component will support only late binding and will not directly expose any methods to 
unmanaged COM+ clients. Therefore, you can provide method-level security only if you create 
serviced components that implement interfaces. However, rather confusingly, the 
SecurityRoleAttribute is applied to the method implementations in the serviced component, not 
to the method declarations in the interface! 
COM+ Imperative SecurityYou can query security information programmatically and obtain 
details such as the account name used by the client that's executing code in a serviced 
component. The static property CurrentCall of the 
System.EnterpriseServices.SecurityCallContext class returns a SecurityCallContext object 
containing the security information relating to the current method call. The SecurityCallContext 
class itself defines a raft of additional methods and properties that you can use to determine 
whether security is actually enabled for the current context (the IsSecurityEnabled property), as 
well as determine the identities used by the process that's directly calling the serviced component 
(DirectCaller) and determine the process that originally made the method call (OriginalCaller). 
These might well be different. 
The OriginalCaller and DirectCaller properties return a SecurityIdentity object, which contains 
information about the identity of the calling process, including the account name. The 
SecurityCallContext class provides the method IsCallerInRole, which you can use to determine 



070-330 

Actualtests.com - The Power of Knowing 
 

whether the identity of the calling process matches a specified role. (The ContextUtil class also 
supplies IsCallerInRole as a static method). The IsUserInRole method allows you to specify an 
account name and a role and determines whether that account name is assigned to the role. 

 
QUESTION 54: 
 
You are an application developer for Certkiller .com. You create an ASP.NET Web 
application that is hosted on an intranet Web application server named Certkiller 1. The 
application is configured to use Forms authentication. The application requires users to log 
on by using a name and password. The application stores users names and passwords in a 
Microsoft SQL Server database that is located on a database server named Certkiller 2. The 
login pages for the application use SSL/TLS encryption. No other pages in the application 
use SSL/TLS. 
You need to test the application to find out if unauthorized users can view user name and 
password information. 
What should you do? 
 
A. Access the application by using a user account that is a member of the SQL Server db_owner 
role. 
B. Access the login pages by using HTTP. 
C. 
Test the users who enter incorrect user name and password combinations are prevented from 
accessing the application. 
D. Capture and analyze the network traffic between Certkiller 1 and Certkiller 2. 
 
Answer: D 
Explanation 
Keeping an eye on the invisible current of network traffic can be a difficult task. One way to do 
this is by using the Network Monitor tool. This tool allows you to look at the traffic on your 
network by capturing a sample of the data that's transmitted. Network Monitor also lets you view 
this sample of network data in a number of useful ways. 
In this article, we'll show you how to install the Network Monitor and explain how it can help 
you examine traffic on your network. We'll also take a closer look at the nature of network 
communications and try to shed some light on the bits of data that flow through all of those 
wires. Finally, we'll show you how to filter the data you've captured to make it easier to view. 
Installing Network MonitorBy default, Network Monitor isn't installed when you first install 
Windows NT. You'll need to install it as a network service before you can use it. To do this, you 
must access the NT setup CD-ROM. This can either be over the network or in your local 
CD-ROM drive. To install Network Monitor, launch the Network utility from the Control Panel. 
Click on the Services tab, and click Add to open the Select Network Service dialog box. Scroll 
down the list of services until you find the Network Monitor Tools And Agent item. Highlight 
the entry, and your dialog box should look like the one shown in Figure  
A. Click OK and type 
the path to your NT setup files if it's requested. Close the Network utility, and restart your 
computer when prompted. 



070-330 

Actualtests.com - The Power of Knowing 
 

Figure A: You'll need to install Network Monitor Tools And Agent. 

 
Running Network MonitorWhen you've rebooted your system, NT places the Network Monitor 
program in the Administrative Tools menu. Launch this program to run it. When you start 
Network Monitor, it will open the Capture window, as shown in Figure B. 
Figure B: As well as sending out a network alert, Network Monitor logs each occurrence of an 
alert event. 

 
You'll notice that when you start Network Monitor, there's no activity in any of the panes. You 
must tell Network Monitor when it should start capturing data. We'll explain how to capture data 
a bit later. First, let's have a closer look at the Capture window. 
The Capture windowThe Capture window consists of four panes. These panes are the Graph 
pane, the Session Stats pane, the Total Stats pane, and the Station Stats pane. Since the Capture 
window is the main interface to the Network Monitor, we'll cover the four panes in detail. 
The Graph paneThe Graph pane is located in the upper-left section of the Network Monitor 
display. This pane displays a graphical representation of the current network activity. The 
display is real-time and shows three statistics: the percent of network usage, the frames per 



070-330 

Actualtests.com - The Power of Knowing 
 

second, and the bytes per second. When expanded, the Graph pane appears as shown in Figure 
C. 
Figure C: The five graphs show the current network traffic. 

 
The % Network Utilization bar graph displays the percentage of your network's available 
resources that are being used. This bar has a maximum value of 100 percent. A black line 
appears on the bar to represent the maximum value reached in any capture session. 
Below network usage lies the Frames Per Second bar graph. This graph displays the number of 
frames transmitted over your network each second. We'll discuss frames in more detail later. The 
right-most value of this bar, like those to follow, indicates the maximum value for the current 
session, unless it's less than 100. 
The remaining bar graphs--Bytes Per Second, Broadcasts Per Second, and Multicasts Per 
Second--display the current statistics for the three measures of network traffic. 
The Session Stats paneWhen two computers establish communication and send and receive 
information, it's known as a session. The Session Stats pane displays a summary of the sessions 
between two systems. The systems are identified by either their names or hardware addresses. 
This pane contains four columns and is located directly below the Graph pane. 
The first column lists one of the systems in the session. This system is referred to as 1. The 
fourth column lists the other system in the session, referred to as 2. The second and third 
columns list the number of frames that were sent between the two systems. The column labeled 
12 indicates the frames sent from the system in the first column to the system in the fourth. The 
column labeled 12 displays the frames sent in the other direction. An example of the Session 
Stats pane is shown in Figure D. 
Figure D: The Session Stats pane displays a summary of the conversations between two 
systems. 



070-330 

Actualtests.com - The Power of Knowing 
 

 
B. The Total Stats paneThe Total Stats pane is located to the right of the Session Stats pane. It 
contains five groups of network statistics. The first is Network Statistics, which displays 
information about the total traffic on your network. The next is Captured Statistics, which shows 
statistics for the frames you've captured. Per Second Statistics calculates the per second averages 
of the traffic on the network. 
The last two groups of statistics deal with your systems network card. Network Card (MAC) 
Statistics lists the supported information about your card. Network Card (MAC) Error Statistics 
lists any errors that were revealed. At the top of the pane, the total time of the capture is 
displayed. Figure E shows the Network Statistics group displaying statistics for a capture that 
lasted a little longer than seven minutes. 
Figure E: The Network Statistics group is just one of five categories of statistics available in the 
Total Stats pane. 

 
The Station Stats paneOn the very bottom of the Capture window, you'll find the Station Stats 
pane. As shown in Figure F, the Station Stats pane displays network statistics for individual 
hosts. It also displays the statistics for broadcast and multicast messages received. You can sort 
columns either descending or ascending by double-clicking on the column head. 
Figure F: The Station Stats pane displays individual system network statistics. 

 
Capturing dataWhen you first launch Network Monitor, the Capture window will be displayed, 
but the statistics will all be zeroed. In order to capture network data, you must start the capture. 
To do this, select Capture | Start from the menu bar. Once you've started the capture, the 
statistics are displayed in real time. While you browse the network or the Internet, you can watch 
as the statistics begin to accumulate. 



070-330 

Actualtests.com - The Power of Knowing 
 

When you've captured a representative amount of data, select Capture | Stop to halt the capture 
and prepare the data for analysis. Before you view the captured data, try to resolve all network 
card numbers to machine names. To do this, select Capture | Find All Names after you've 
stopped your capture. 
Viewing captured dataWhen monitoring your network traffic, what you're really capturing are 
the individual units of network communication, or frames. A frame is one part of the message 
being sent from one computer to another. Most network cards can only handle between 1,500 
and 4,000 bytes of information at one time. Because of this, long messages must be broken into a 
number of smaller chunks. These chunks are then packaged in frames and sent to their 
destination where they're put back together to form the entire message. Beyond just containing a 
part of the message, each frame must also have the address of the source and destination 
computers, because each frame is transmitted individually over the network. 
Sending a large message using frames is much like sending a car from New York to California 
using containers that are all the same size. Before the message goes out, you must break it down, 
put the parts into packages that are separately addressed, including the ship to and return 
addresses. Once they're received, the containers are opened, accounted for, and reassembled into 
the original message. 
When you view the captured data in Network Monitor, you're really seeing the individual 
frames. Unlike a postal letter, each frame has two destination addresses--a software address and 
a hardware address. 
The software address is the arbitrary address assigned to the machine. Depending on the 
protocol, this address can have different forms. In the TCP/IP protocol, it's the familiar dotted 
quad IP address. 
The hardware address is the network adapter fixed address. This address is usually burned onto 
the adapter by the manufacturer and can't be changed. You may also see the hardware address 
called a Media Access Control (MAC) address. 
A system can send two types of frames. The first is a directed transmission. This is a frame that 
has a specific destination address, like the familiar business envelopes. A directed transmission 
happens when you're communicating with a specific computer, such as when you request a Web 
page from a server. 
The second type of frame is the broadcast transmission. A broadcast transmission is sent to all 
systems on your network. To do this, broadcast transmissions use a special hardware address. 
Broadcast transmissions are used when the address for a specific host is unknown, or when a 
service is available on the network, but the host offering this service may change. Using the 
Computer dialog box (by choosing Find | Computer) is an example of a broadcast message. 
Searching for a particular computer name sends a broadcast message to all computers. If a 
computer's name matches the name in the broadcast transmission, the system sends a directed 
transmission to the source destination listed in the broadcast frame. 
Viewing the framesTo view the details of a captured data set, you select Capture | Display 
Captured Data from the menu bar, or press [F12]. This displays the Capture (Summary) window, 
as shown in Figure G. In this window, you see each captured frame. Each line lists the frame's 
number, time of capture, source address, destination address, protocol, and description. 
Figure G: The Capture (Summary) window displays the captured frames 



070-330 

Actualtests.com - The Power of Knowing 
 

. 
You can view the contents of an individual frame by double-clicking on any frame in the 
window. The window will then divide into three frames, as seen in Figure H. The top pane 
remains the Summary pane. Beneath that, the Detail frame displays the information added to the 
frame by the various protocols. The bottom pane in the window is the Hex pane. This pane 
displays the contents of the frame in both ASCII and hexadecimal. 
Figure H: When you double-click on a frame, the Capture window divides into the Summary, 
Detail, and Hex frames. 

 
It's beyond the scope of this article to try to explain the possible contents of any individual 
frame. However, you can find a number of references in the Network Monitor Help pages. 
Filtering captured dataOne of the problems with using Network Monitor is that it will capture all 
of the frames it sees. This can make viewing the individual frames more difficult as they get lost 
in the abundance of data. One way to limit the types of frames to view is by using Filters. You 
can filter captured data by filtering the frames according to the protocol used to transmit them. 
Another way is to display only data transmitted from a specific computer or group of computers. 
We'll show you how to configure a filter to display only TCP/IP frames. To display only the 
frames transmitted by a specific computer or protocol, you must first capture some data. As 
described above, you do this by starting Network Monitor and choosing Capture | Start from the 
menu bar. After you've begun the capture, surf the 'Net using a Web browser to generate some 
network traffic. After a minute or so, you should have enough data. Select Capture | Stop from 
the menu bar to end the capture. 
Next, display the Capture Summary window by choosing Capture | Display Captured Data from 
the menu bar. Select Display | Filter to launch the Display Filter dialog box, as shown in Figure 
I. By default, the Filter is configured to display frames of any protocol. 



070-330 

Actualtests.com - The Power of Knowing 
 

Figure I: 
The Display Filter dialog box is configured by default to display frames from any machine sent 
with any protocol. 

 
Double-click on Protocol == Any to launch the Expression dialog box. Click Disable All to 
remove all protocols from the filter. Then, scroll down the Disabled Protocols list until you find 
the TCP protocol. Highlight this protocol by clicking on it with your mouse, and then click 
Enable. Your dialog box should look like the one shown in Figure J. Click OK to apply the 
expression and close the dialog box. 
Figure J: Enabling only the TCP protocol allows us to view only those frames transmitted using 
that protocol. 

 
The Display Filter dialog box now shows that you'll be displaying only those frames that were 
prepared using the TCP protocol. Click OK to close this dialog box, and return to the Capture 
window summary display. 
In the summary window, only frames sent with the TCP protocol are displayed. Select one of the 
frames and double-click on it. View the contents of the frame in the Hex pane. Use your arrow 
keys to scroll through the frames while watching the Hex pane. You should see some 
recognizable data appear in the pane. In Figure K, you can see that the frame selected contained 
HTML code, which is probably part of the transmission of a Web page. 
Figure K: This frame contains HTML code and it was probably just one frame of a transmission 
of a Web page. 



070-330 

Actualtests.com - The Power of Knowing 
 

 
ConclusionNetwork Monitor is a powerful tool to use when analyzing network traffic. It can 
give you an overview of the performance of your system, as well as allow you to view individual 
frames. Using the techniques described here, you can peek at the hidden stream of data that runs 
inside your network cables. 

 
QUESTION 55: 
 
You are an application developer for Certkiller .com. You are developing an application 
that will be distributed to partner companies that do business with Certkiller . The partner 
companies must be able to verify the authenticity of the application's assemblies before 
they will install the application. 
You need to ensure that the assemblies meet the requirements of the partner companies, 
You want your solution to minimize the number of additional configuration steps required 
by the partner companies. 
What should you do? 
 
A. Use a certificate issued by Certkiller 's internal, self-signed certification authority (CA) to 
digitally sign the assemblies. 
B. Use a certificate issued by a third-party commercial certification authority (CA) to digitally 
sign the assemblies. 
C. Run the PEVerify tool before distributing the application to partner companies. 
D. Run the Software Publisher Certificate Test tool before distributing the application to partner 
companies. 
 
Answer: B 
Explanation 
Choosing Security Solutions That Use Public Key Technology 
Software that is downloaded from the Internet to users' computers can contain programs such as 
viruses and Trojan horses that are designed to cause malicious damage or provide clandestine 
network access to intruders. As networks become more interconnected, malicious software and 
viruses also become a threat to intranets. To help counter this growing threat, you can digitally 
sign the software that you distribute on your intranets or the Internet to ensure its integrity and to 
assure others that the software can be trusted. Signed software ensures that users can verify the 
origin of the software, as well as verify that no one has tampered withit. 
Microsoft developed the Microsoft(r) Authenticode(r) technology, which enables developers to 
digitally sign software. The last thing developers do before they release software is digitally sign 
the software. Any modification to the software after it is signed invalidates the digital signature. 



070-330 

Actualtests.com - The Power of Knowing 
 

By using Authenticode technology, code signers who own valid X.509 version3 code-signing 
certificates can sign software with their private key. Several other third-party code signing 
technologies also use digital certificates to enable code signing. 
Code Signing Within Your OrganizationExecutable programs, scripts, and ActiveX(r) controls 
that are distributed in Windows2000 domains should be digitally signed by trusted developers. 
To protect your network from malicious programs and viruses, you can configure Internet 
Explorer to specify security settings for the Internet, local intranet, Trusted sites, and Restricted 
sites security zones. You can specify security settings that prevent users from downloading and 
running unsigned software from any security zone. You can also configure Internet Explorer to 
trust specific software publishers so that any software that is signed by these publishers is 
downloaded automatically without notifying the users. For more information about Internet 
Explorer security, see the Microsoft(r) Windows(r)2000 Server Resource Kit Internet Explorer 
Resource Guide. 
In addition, you can configure Public Key Group Policy to specify the CAs for code signing that 
are trusted in your organization. You can trust software publishing certificates that are issued 
either by commercial CAs or by your CAs. You can also create and use CTLs to establish trust 
in the domain for code-signing certificates. 
You can use Certificate Services to issue code-signing certificates to the developers who sign 
software for distribution on your intranet. 
Code Signing on the InternetWhen software is distributed over the Internet, users are more likely 
to trust software that is signed by a publisher whose code-signing certificates ("software 
publisher certificates") have been issued by a reputable commercial C 
A. Using commercial CAs 
also removes the liability placed on your organization when you assume the responsibilities of a 
commercial CA for external software distribution. Therefore, 
if you distribute software on the Internet, consider obtaining the services of a commercial CA to 
issue digital signing certificates to your external software developers. 
Consider providing special protection for the private keys that are used to sign code. If someone 
obtains access to a private key for code signing, they can impersonate your organization, 
distribute signed but defective or malicious code, and damage your organization's reputation. 
Some third-party vendors offer smart card solutions that enable code signing with smart cards. 
You can establish a smart card program for code signers that provides additional protection for 
their private keys. 
Automating Code Signing and Software DistributionYou can build custom applications to 
automate code signing and the distribution of software within your organization or to external 
Web sites. Internal and external developers or program managers who have valid code-signing 
certificates can use custom applications to submit code to be signed automatically and processed 
for distribution. Deploying code-signing applications includes the following activities: 
* Installing CAs that issue code-signing certificates or obtaining certificate services from a 
commercial CA. 
* Developing the custom applications for code signing and software distribution. 
* Issuing code-signing certificates to the appropriate developers or program managers. 
* Configuring the software distribution infrastructure and services. 
For example, you might use Active Server Pages (ASP) technology and Internet Information 
Services to build code-signing and software distribution Web sites. You might configure 
one-to-one certificate mapping to grant permission for use of the Web site to users who have 



070-330 

Actualtests.com - The Power of Knowing 
 

valid code-signing certificates. Users who do not have valid code-signing certificates are not 
permitted to use the site to submit code for signing and distribution. 

 
QUESTION 56: 
 
You are an application developer for Certkiller .com. You are developing an ASP.NET Web 
application on your Microsoft Windows XP Professional client computer. Your computer 
has IIS 5.1 installed and is hosting the development project. Your computer also has the 
most recent version of the Microsoft .NET Framework installed. The completed 
application will run under IIS 6.0. 
You need to ensure that your testing activities accurately reflect the security configuration 
of the production environment. 
What should you do before testing the application? 
 
A. Install the .NET Framework 1.0 on the production Web server. 
B. Deploy the application to a Microsoft Windows Server 2003 test computer. 
C. Install the most recent security updates for Microsoft Visual Studio .NET 2003 on your client 
computer. 
D. Disable the ASPNET user account on your client computer. 
 
Answer: B 
Explanation 
It is an industry best practice to never place untested code in a live environment. The best 
practice is to setup a lab environment that mimics the production and perform testing there prior 
to deployment. It is easier to rollback a test environment than the production environment. In 
most cases a rollback to a pristine test environment is mandatory to ensure the subsequent testing 
is not impacted by previous test with different applications. 
Since IIS6 can be configured to be much more restrictive than earlier versions, this validation is 
required. 
Software Testing Best Practices 
http://www.chillarege.com/authwork/ papers1990s/TestingBestPractice.pdf 
Desktop Deployment Web Seminar 
http://www.microsoft.com/downloads/details.aspx?FamilyID=2bc24b8c-ba04-45c3-bcd0-
12af0e718e79&Displa 

 
QUESTION 57: 
 
You are an application developer for Certkiller .com. You are testing an application that 
was developed by another developer. 
The application maintains its own list of authorized users. Each user is assigned a security 
level of 1, 2, or 3. When a new user account is created, the security level for that user is 
entered into a text box. The new user account information is saved in a Microsoft SQL 
Server table by using a stored procedure. You verify that user accounts that have any of 
the three security levels can perform only the intended actions within the application. 
You need to identify any security vulnerabilities in the portion of the application that 
creates new user accounts. 



070-330 

Actualtests.com - The Power of Knowing 
 

What should you do first? 
 
A. Use SQL Query Analyzer to create a new user account that has a security level of 2. 
Test the application to see of the new user account can log on to the application. 
B. Create a new user account that has a security level other than 1, 2, or 3. 
Test the application to see what the new user account can do. 
C. Use Osql.exe to call the stored procedure and create a new user account that has a security 
level of 3. 
Test the application to see what the new user account can do. 
D. Create a new user account that has a security level of 3. 
Test the application to see what the new user account can do. 
 
Answer: B 
Explanation 
Security testing is about validating your application's security services and identifying potential 
security flaws. This section contains important testing recommendations for verifying that you 
have created a securable application. 
Since attackers have no standard method of breaking into things, there are no standard methods 
of conducting security testing. Also, there are few tools available at this time to test security 
aspects thoroughly. Since a functional bug in an application can also represent a potential 
security flaw, you need to conduct functional testing prior to conducting security testing. 
It is important to note that security testing will not prove conclusively that an application is 
secure. Instead, it serves only to validate the effectiveness of instituted countermeasures, which 
were chosen based upon presumptions that were made during the threat analysis phase. 
Provided below are some suggestions for testing the securability of your application. 
There are some security issues you should be aware of when you test your smart documents. 
These security measures, described in the Security section, are in place to provide security for 
Microsoft(r) Office 2003 users. However, during testing, you may want to disable the XML 
expansion pack security check, if possible, or you may want to create a test environment that 
meets the security requirements of your users. 
The following topics provide additional information about security within a development and 
testing environment: 
Disabling the XML Expansion Pack Security Check 
Digital Code Signing for Testing Purposes 
Creating a Digital Certificate for Testing Purposes 
Delay Signing a Smart Document Assembly 
Testing a Signed XML Expansion Pack 
Test for Buffer OverflowsOne of the first security bugs exploited in computer history was a 
buffer overflow. Buffer overflows continue to be one of the most dangerous and most commonly 
occurring weaknesses. Attempts to exploit this type of vulnerability can result in problems 
ranging from crashing the application to an attacker inserting and executing malignant code in 
the application process. 
When writing data to buffers, it is imperative that developers not write more to the buffer than it 
can possibly hold. If the amount of data being written exceeds the buffer space that has been 
allocated, a buffer overflow occurs. When a buffer overflow occurs, data is written into parts of 
memory that may be allocated for other purposes. A worst-case scenario is when the buffer 



070-330 

Actualtests.com - The Power of Knowing 
 

overflow contains malicious code that is then executed. Buffer overflows account for a large 
percentage of security vulnerabilities. 
Conduct source code security reviewsDepending upon the sensitivity of the application in 
question, it might be prudent to conduct a security audit of the application source code. A source 
code audit should not be confused with a code review. The purpose of a standard code review is 
to identify general code defects that affect the functionality of the code. The purpose of a source 
code security review is to identify security flaws, intentional or otherwise. Such a review would 
be especially warranted when developing applications that handle financial transactions or 
provide for public safety. 
Validate contingency plansThere will always be a potential that an application's security 
defenses can be breached and it is only prudent that contingency plans are in place and validated. 
What steps will be taken if a virus is detected on your application server or in your data center? 
When security is thwarted, reactions must occur rapidly to prevent further damage. Find out if 
your contingency plans will work before they must be battle-tested. 
Attack your applicationTesters are accustomed to tormenting applications in an attempt to make 
them fail. Hacking your own application is a similar, but more focused, process. When 
attempting to attack your application, you should be looking for exploitable flaws that represent 
a weak spot in your application's defenses. 

 
QUESTION 58: 
 
You are an application developer for Certkiller .com. Part of the application that you are 
developing accepts user input from a TextBox control. The information entered by the user 
must be alphanumeric only, and it must contain no symbols or punctuation. 
You need ensure that the user's input contains only the appropriate data before using the 
input elsewhere in the application. Your solution must not require users of the application 
to take additional steps when entering data. 
What should you do? 
 
A. Modify the TextChanged event handler of the TextBox control so that the Text property of 
the text box is cleared whenever a non-alphanumeric character is detected. 
B. Use the following regular expression to modify the user's input. 
[^\w\.@-] 
C. Store the user's input in a variable named userinput. 
Use the following expression to modify the user's input. 
userinput.Replace("@-] ","") 
D. Convert the user's input to all lowercase characters. 
 
Answer: B 
Explanation 
Never Trust User Input!I know this injunction sounds harsh, as if people are out to get you. But 
many are. If you accept input from users, either directly or indirectly, it is imperative that you 
validate the input before using it, because people will try to make your application fail by 
tweaking the input to represent invalid data. The first golden rule of user input is, All input is 
bad until proven otherwise. Typically, the moment you forget this rule is the moment you are 
attacked. In this section, we'll focus on the many ways developers read input, how developers 



070-330 

Actualtests.com - The Power of Knowing 
 

use the input, and how attackers try to trip up your application by manipulating the input. 
Let me introduce you to the second golden rule of user input: Data must be validated as it crosses 
the boundary between untrusted and trusted environments. By definition, trusted data is data you 
or an entity you explicity trust has complete control over untrusted data refers to everything 
else. In short, any data submitted by a user is initially untrusted data. The reason I bring this up 
is many developers balk at checking input because they are positive that the data is checked by 
some other function that eventually calls their application, and they don't want to take the 
performance hit of validating the data. But what happens if the input comes from a source that is 
not checked, or the code you depend on is changed because it assumes some other code performs 
a validity check? 
NOTE 
A somewhat related question is, what happens if an honest user simply makes an input mistake 
that causes your application to fail? Keep this in mind when I discuss some potential 
vulnerabilities and exploits. 
I once reviewed a security product that had a security flaw because a small chance existed that 
invalid user input would cause a buffer overrun and stop the product's Web service. The 
development team claimed that it could not check all the input because of potential performance 
problems. On closer examination, I found that not only was the application a critical network 
component-and hence the potential damage from an exploit was immense-but also it performed 
many time-intensive and CPU-intensive operations, including public-key encryption, heavy disk 
I/O, and authentication. I doubted much that a half dozen lines of input-checking code would 
lead to a performance problem. As it turned out, the code did indeed cause no performance 
problems, and the code was rectified. 
User Input RemediesAs with all user input issues, the first rule is to determine which input is 
valid and to reject all other input. (Have I said that enough times?) Other not-so-paranoid options 
exist and offer more functionality with potentially less security. I'll discuss some of these also. 
A Simple and Safe Approach: Be Hardcore About Valid Input 
In the cases of the Web-based form and SQL examples earlier, the valid characters for a 
username can be easily restricted to a small set of valid characters, such as A-Za-z0-9. The 
following server-side JScript snippet shows how to construct and use a regular expression to 
parse the username at the server: 
// Determine whether username is valid. 
// Valid format is 1 to 32 alphanumeric characters. 
var reg=/[A-Za-z0-9]{1,32}$/g; 
if (reg.test(Request.form("name")) > 0) { 
// Cool! Username is valid. 
} else { 
// Not cool! Username is invalid. 
}A Regular Expression Rosetta StoneRegular expressions are incredibly powerful, and their 
usefulness extends beyond just restricting input. They constitute a technology worth 
understanding for solving many complex data manipulation problems. I write many applications, 
mostly in Perl and C#, that use regular expressions to analyze log files for attack signatures and 
to analyze source code for security defects. 
Regular Expressions in Managed CodeMost if not all applications written in C#, Managed C++, 
Microsoft Visual Basic .NET, ASP.NET, and so on have access to the .NET Framework and as 
such can use the System.Text.RegularExpressions namespace. I've already outlined its syntax 



070-330 

Actualtests.com - The Power of Knowing 
 

earlier in this chapter. However, for completeness, following are C#, Visual Basic .NET, and 
Managed C++ examples of the date extraction code I showed earlier in Perl. 
C# Example 
// C# Example 
strings =@"we leave at12:15pm for mount doom 
Regexr=new Regex{@"*(\d{2}[ap]m)"Regexoptions. ignore case); 
if (r.Match(s).Success) 
console.write (rMatch(s).Result ("$1")); 
Visual Basic .NET Example 
' Visual Basic .NET example 
Imports System.Text.RegularExpressions 
. 
Dim s As String 
Dim r As Regex 
s = "We leave at 12:15pm for Mount Doom." 
r = New Regex(".*(\d{2}:\d{2}[ap]m)", RegexOptions.IgnoreCase) 
If r.Match(s).Success Then 
Console.Write(r.Match(s).Result("$1")) 
End IfManaged C++ Example 
// Managed C++ version 
#using <mscorlib.dll> 
#include <tchar.h> 
#using <system.dll> 
.usining name space system 
.usining name space system::text; 
.usining name space system::text; Regular Expressions; 
strings =*s S"we leave at12:15pm for mount doom 
Regexr*rnew Regex{@"*(\d{2}[ap]m)"Regexoptions. ignore case); 
if (r->Match(s)->Success) 
console::write line (r->match(s)->Result (S"$1"));Note that the same code applies to 
ASP.NET because ASP.NET is language-neutral. 
Regular Expressions in ScriptThe base JavaScript 1.2 language supports regular expressions by 
using syntax similar to Perl. Netscape Navigator 4 and later and Microsoft Internet Explorer 4 
and later also support regular expressions. 
var r= /.*(\d{2}:\D{2}[ap]m/; 
var s=/.*we leave at12:15pm for mount doom 
if (s.match(r)) 
alert (reg exp.$1);Regular expression are also available to developers in Microsoft visul 
Basic Scripting Edition (VBScript) version 5 via the RegExp object: 
Set r = new RegExp 
r.Pattern = ".*(\d{2}:\d{2}[ap]m)" 
r.IgnoreCase = True 
Set m = r.Execute("We leave at 12:15pm for Mount Doom.") 
MsgBox m(0).SubMatches(0)\w ----> matches any word character, equivalent to [a-zA-Z0-9] 
Regular Expressions 
Regular expressions are a concise and flexible notation for finding and replacing patterns of text. 



070-330 

Actualtests.com - The Power of Knowing 
 

The regular expressions used within Visual Studio are a superset of the expressions used in 
Visual C++ 6.0, with a simplified syntax. 
You can use the following regular expressions in the Find, Replace, Find in Files or Replace in 
Files dialog boxes to refine and expand your search. 
NoteYou must select the Use check box in the Find, Replace, Find in Files, and Replace in Files 
dialog boxes before using any of the following expressions as part of your search criteria. 
The following expressions can be used to match characters or digits in your search string: 
  
Expression   Syntax Description 
Any character .   Matches any one character 
      except a line break. 
Maximal - zero or more *   Matches zero or more 
      occurrences of the 
      preceding expression. 
Maximal - one or more +   Matches at least one 
      occurrence of the preceding 
      expression. 
Minimal - zero or more @   Matches zero or more 
      occurrences of the 
      preceding expression, 
      matching as few characters 
      as possible. 
Minimal - one or more #   Matches one or more 
      occurrences of the 
      preceding expression, 
      matching as few characters 
      as possible. 
Repeat n times ^n   Matches n occurrences of 
      the preceding expression. 
      For example, [0-9]^4 
      matches any 4-digit 
      sequence. 
Set of characters []   Matches any one of the 
      characters within the []. To 
      specify a range of 
      characters, list the starting 
      and ending character 
      separated by a dash (-), as 
      in [a-z]. 
Character not in set [^...]   Matches any character not 
      in the set of characters 
      following the ^. 
Beginning of line ^   Anchors the match to the 



070-330 

Actualtests.com - The Power of Knowing 
 

      beginning of a line. 
End of line $   Anchors the match to the 
      end of a line. 
Beginning of word <   Matches only when a word 
      begins at this point in the 
      text. 
Leading the way in IT testing and certification tools, www. Certkiller .com 
End of word >   Matches only when a word 
      ends at this point in the text. 
Grouping ()   Groups a subexpression. 
      

The following table lists the syntax for matching by standard Unicode character properties. The 
two-letter abbreviation is the same as listed in the Unicode character properties database. These 
may be specified as part of a character set. For example, the expression [:Nd:Nl:No] matches any 
kind of digit. 
  

Expression   Syntax Description 
Uppercase letter :Lu   Matches any one capital 
      letter. For example, :Luhe 
      matches "The" but not 
      "the". 
Lowercase letter :Ll   Matches any one lower case 
      letter. For example, :Llhe 
      matches "the" but not 
      "The". 
Title case letter :Lt   Matches characters that 
      combine an uppercase letter 
      with a lowercase letter, 
      such as Nj and Dz. 
Modifier letter :Lm   Matches letters or 
      punctuation, such as 
      commas, cross accents, and 
      double prime, used to 
      indicate modifications to 
      the preceding letter. 
Other letter :Lo   Matches other letters, such 
      as gothic letter ahsa. 
Decimal digit :Nd   Matches decimal digits 
      such as 0-9 and their 
      full-width equivalents. 
Letter digit :Nl   Matches letter digits such as 



070-330 

Actualtests.com - The Power of Knowing 
 

      roman numerals and 
      ideographic number zero. 
Other digit :No   Matches other digits such as 
      old italic number one. 
Open punctuation :Ps   Matches opening 
      punctuation such as open 
      brackets and braces. 
Close punctuation :Pe   Matches closing 
      punctuation such as closing 
      brackets and braces. 
Initial quote 
punctuation :Pi   Matches initial double 

      quotation marks. 
Final quote 
punctuation :Pf   Matches single quotation 

      marks and ending double 
      quotation marks. 
Dash punctuation Leading the way in :Pd IT testing and certificationMatches the dash mark. tools, www. Certkiller .com
Connector 
punctuation :Pc   Matches the underscore or 

      underline mark. 
      

In addition to the standard Unicode character properties, the following additional properties may 
be specified. These properties may be specified as part of a character set. 
  

  Expression   Syntax Description 
Alpha   :Al   Matches any one character. 
        For example, :Alhe matches 
        words such as "The", 
        "then", and "reached". 
Numeric :Nu   Matches any one number or 
        digit. 
Punctuation :Pu   Matches any one 
        punctuation mark, such as 
        ?, @, ', and so on. 
White space :Wh   Matches all types of white 
        space, including publishing 
        and ideographic spaces. 
Bidi   :Bi   Matches characters from 
        right-to-left scripts such as 
        Arabic and Hebrew. 



070-330 

Actualtests.com - The Power of Knowing 
 

Hangul   :Ha   Matches Korean Hangul 
        and combining Jamos. 
Hiragana :Hi   Matches hiragana 
        characters. 
Katakana :Ka   Matches katakana 
        characters. 
Ideographic/Han/Kanji :Id   Matches ideographic 
        characters, such as Han and 
        Kanji. 
       

.NET Framework Regular Expressions 
Provides a brief introduction to .NET regular expressions. 
Regular Expressions as a Language 
Provides an overview of the programming-language aspect of regular expressions. 
Regular Expression Classes 
Provides detailed information and code examples illustrating how to use the regular expression 
classes. 
Details of Regular Expression Behavior 
Provides detailed information about the capabilities and behavior of .NET Framework regular 
expressions. 
Regular Expression Examples 
Provides code examples illustrating typical uses of regular expressions. 
System.Text.RegularExpressions 
Provides class-library reference information for the .NET Framework 
System.Text.RegularExpressions namespace. 
Regular Expression Validator Control Sample 
The regular expression validator control shown here extends the base validator control described 
in the Base Validator Control Sample. This validator adds the following functionality to the base 
validator: 
* It exposes a property named ValidationExpression that allows a user (page developer) to 
specify a regular expression. 
* It overrides the EvaluateIsValid method (defined as an abstract method in BaseDomValidator) 
to provide logic to determine whether the field to validate matches the pattern specified by the 
regular expression. 
* It overrides AddAttributesToRender (inherited from WebControl) to provide a client-side 
handler for the evaluation logic. The client-side handler is a function defined in the script library. 

 
QUESTION 59: 
 
You are an application developer for Certkiller .com. You are developing a method for a 
Windows Forms application. The method will be used to access local files. The files are 
located in a folder and its subfolders on drive C of the client computer. All the computers 
in Certkiller use the NTFS file system exclusively. 



070-330 

Actualtests.com - The Power of Knowing 
 

The design document for the application specifies the path location for the folder that 
contains the files. The design document also specifies that the path to the files will be 
provided as an input parameter to the method. The parameter will be a string parameter. 
You need to prevent users of the application from accessing any files that are not contained 
in the specified folder. 
Which two actions should you include in the method? (Each correct answer presents part 
of the solution. Choose two) 
 
A. Reject any path string that includes a tilde (~). 
B. Reject any path string that includes a folder location that does not match the specified folder 
location. 
C. Reject any path string that includes either a colon (:) or a backslash (\). 
D. Reject any path string that includes either a \..\ sequence or a \\ sequence. 
 
Answer: B, D 
Explanation 
Directory traversal can be accomplished using the '~' and the '\..\', the '\\' can be used to create a 
connection to any available sharename. Checking for the valid path string can also be 
accomplished using regular expressions and simply using the pathname. Canonicalization checks 
must also be made. 
BOLD indicates what the command resolved to: 
C:\>cd \..\windows 
C:\WINDOWS>cd progra~1 
The system cannot find the path specified. 
C:\WINDOWS>cd \..\progra~1 
C:\PROGRA~1>cd \\windows 
'\\windows' 
CMD does not support UNC paths as current directories. 
C:\PROGRA~1>cd \..\..system32 
The system cannot find the path specified. 
C:\PROGRA~1>cd \..\..\system32 
The system cannot find the path specified. 
C:\PROGRA~1>cd \..\..\windows\system32 
C:\WINDOWS\system32>cd \\ 
'\\' 
CMD does not support UNC paths as current directories. 
C:\WINDOWS\system32>cd \\..\\wutemp 
'\\..\\wutemp' 
CMD does not support UNC paths as current directories. 
C:\WINDOWS\system32>cd progra~1 :\..\micros~1 
C:\WINDOWS\system32\MICROS~1> cd \..\progra~1:\..\micros~1 
The system cannot find the path specified. 
C:\WINDOWS\system32>cd \..\ 
C:\>cd \..\..\windows\system32 
C:\WINDOWS\system32>cd\ 
C:\>cd \..\wind~1\system32 



070-330 

Actualtests.com - The Power of Knowing 
 

The system cannot find the path specified. 
C:\>cd windows:system32 
The system cannot find the path specified. 
Directory Traversal 
HTTP exploits use the Web server software to perform malicious activities. Directory traversal is 
one such exploit which lets attackers access restricted directories, execute commands and view 
data outside the normal Web server directory where the application content is stored. 
Detailed description 
Attackers use directory traversal attacks to try to access restricted Web server files residing 
outside of the Web server's root directory. 
The basic role of Web servers is to serve files. Files can be static, such as image and HTML 
files, or dynamic, such as ASP and JSP files. When the browser requests a dynamic file, the Web 
server first executes the file and then returns the result to the browser. Hence, dynamic files are 
actually files executed on the Web server. 
To prevent users from accessing unauthorized files on the Web server, Web servers provide two 
main security mechanisms: the root directory and access controls lists. The root directory limits 
users' access to a specific directory in the Web server's file system. All files placed in the root 
directory and in its sub-directories are accessible to users. To limit users' access to specific files 
within the root directory, administrators use access control lists. Using access control lists, 
administrators can determine whether a file can be viewed or executed by users, as well as other 
access rights. 
The root directory prevents attackers from executing files such as cmd.exe on Windows 
platforms or accessing sensitive files such as the "passwd" password file on Unix platforms, as 
these files reside outside of the root directory. The Web server is responsible for enforcing the 
root directory restriction. 
By exploiting directory traversal vulnerabilities, attackers step out of the root directory and 
access files in other directories. As a result, attackers might view restricted files or execute 
powerful commands on the Web server, leading to a full compromise of the Web server. 
A directory traversal vulnerability can exist either in the commercial Web server itself or in the 
Web application code executed on the Web server. In the case of Web application code, dynamic 
pages usually receive input from browsers. Here is an example of such an HTTP request: 
http://www.acme-hackme.com/online/getnews.asp?item=20March2003.html 
In this example, the dynamic page requested by the browser is called getnews.asp and the 
browser sends the Web server the parameter item with a value of 20March2003.html. When 
executed by the Web server, getnews.asp retrieves the file 20March2003.html from the Web 
server's file system, renders it and sends it back to the browser which presents it to the user. A 
skilled attacker will immediately identify the potential problem in this request as the value of the 
parameter ends with a file extension, in this case "html". The attacker will then assume that the 
dynamic page retrieves the file from the file system and uses it. By sending the following URL 
to the Web server: 
http://www.acme-hackme.com/online/getnews.asp?item=../../../../ WINNT/win.ini 
the attacker causes getnews.asp to retrieve the file ../../../../WINNT/win.ini from the file system 
and send it to the attacker's browser. The term "../" stands for "one directory up". This is a 
common operating system directive. Therefore, the string ../../../../WINNT/win.ini means "go 
four directories up and retrieve the file win.ini from there". The attacker needs to guess how 
many directories to climb in order to get to the desired directory. (In this example the attacker 



070-330 

Actualtests.com - The Power of Knowing 
 

tries to get to "C:\" and is assuming that the Web server's root directory is located four 
directories below "C:\"). Guessing the exact combination is very easy. The attacker simply sends 
multiple requests until the desired result is achieved. 
The directory traversal vulnerability occurs when programmers fail to validate input received 
from browsers. In the above example, the getnews.asp code does not validate that the value of 
the item parameter does not exceed from the root directory. The directory traversal vulnerability 
actually bypasses the Web server's root directory restriction by introducing bad code into the 
Web server. 
Web applications are not the only source of directory traversal vulnerabilities in your Web site. 
Some vulnerabilities exist within the Web server. These vulnerabilities can be part of sample 
files (e.g., sample ASP files) that exist on the Web server, or can be incorporated into the Web 
server software. For example, some earlier versions of the Microsoft IIS Web server included 
directory traversal vulnerabilities that allow attackers to fully compromise the Web server by 
executing files on the server. For example, the following URL: 
http://www.acme-hackme.com/scripts/..%5c../winnt/system32/ cmd.exe?/c+dir+c:\ 
would execute the cmd.exe file (operating system shell) and run the "dir c:\" command which 
lists all files in the C:\ directory. Notice the string "%5c" that appears in the URL. This is a Web 
server escape code. Escape codes are used to represent normal characters in the form of %nn, 
where nn stands for a two-digit number. The escape code "%5c" represents the character "\". The 
problem is that the IIS root directory enforcer did not check for escape codes and allowed that 
request to execute. The Web server's operating system understands escape codes and executes 
the command. 
Escape codes are also very useful for bypassing poorly written filters enforced on input received 
from users. If the filter looks for "../", then the attacker could easily change the input to 
"%2e%2e/". This has the same meaning as "../", but is not detected by the filter. The escape code 
%2e represents the character "." (dot). 
What makes Web-based canonicalization issues so prevalent and hard to defend against is the 
number of ways you can represent any character. For example, any character can be represented 
in a URL or a Web page by using one or more of the following mechanisms: 
1. The "normal" 7-bit or 8-bit character representation, also called US-ASCII 
2. Hexadecimal escape codes 
3. UTF-8 variable-width encoding 
4. UCS-2 Unicode encoding 
5. Double encoding 
6. HTML escape codes (Web pages, not URLs) 
7-Bit and 8-Bit ASCIII trust you understand the 7-bit and 8-bit ASCII representations, which 
have been used in computer systems for many years. 
Hexadecimal Escape CodesHex escapes are a way to represent a possibly nonprintable character 
by using its hexadecimal equivalent. For example, the space character is %20, and the pounds 
sterling character (£) is %A3. You can use this mapping in a URL such as http:// 
www.northwindtraders.com/my%20document.doc, which will open my document.doc on the 
northwind Traders web site; http://www.northwindtraders.com/my)0/02Edoc will 
do likewise. 
In Chapter 8, I mentioned a canonicalization bug in eEye's SecureIIS tool. The tool looked for 
certain words in the client request and rejected the request if any of the words were found in the 
request. However, an attacker could hex escape any of the characters in the request, and the tool 



070-330 

Actualtests.com - The Power of Knowing 
 

would not reject the requests, essentially bypassing the security mechanisms. 
UTF-8 Variable-Width EncodingEight-bit Unicode Transformation Format, UTF-8, as defined in 
RFC 2279 (www.ietf.org/rfc/rfc2279.txt), is a way to encode characters by using one or more 
bytes. The variable-byte sizes allow UTF-8 to encode many different byte-size character sets, 
such as 2-byte Unicode (UCS-2), 4-byte Unicode (UCS-4), and ASCII, to name but a few. 
However, the fact that one character can potentially map to multiple- byte representations is 
problematic. 
How UTF-8 Encodes Data 
UTF-8 can encode n-byte characters into different byte sequences, depending on the value of the 
original characters. For example, a character in the 7-bit ASCII range 0x00-0x7F encodes to 
07654321, where 0 is the leading bit, set to 0, and 7654321 represents the 7 bits that make up the 
7-bit ASCII character. For instance, the letter H, which is 0x48 in hex, or 1001000 in binary, 
becomes the UTF-8 character 01001000, or 0x48. As you can see, 7-bit ASCII characters are 
unchanged by UTF-8. 
Things become a little more complex as you start mapping characters beyond the 7-bit ASCII 
range, all the way up to the top of the Unicode range, 0x7FFFFFFF. For example, any character 
in the range 0x80-0x7FF encodes to 110xxxxx 10xxxxxx, where 110 and 10 are predefined bits 
and each x represents one bit from the character. For example, pounds sterling is 0xA3, which is 
10100011 in binary. The UTF-8 representation is 11000101 10000011, or 0xC5 0x83. However, 
it doesn't stop there. UTF-8 can encode larger byte-size characters. Table 12-2 outlines the 
mappings. 
Table 12-2 UTF-8 Character Mappings 
Character Range Encoded Bytes 
0x00000000- 0x0000007F 0xxxxxxx 
0x00000080- 0x000007FF 110xxxxx 10xxxxxx 
0x00000800- 0x0000FFFF 1110xxxx 10xxxxxx 10xxxxxx 
0x00010000- 0x001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 
0x00200000- 0x03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 
  10xxxxxx 
0x04000000- 0x7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 
  10xxxxxx, 10xxxxxx 
    

and this is where the fun stars;it is possible to represent a character by using any of these mapping even 
though the UTF-8 specification warns against doing so. All UTF-8 characters should be 
represented in the shortest possible format. For example, the only valid UTF-8 representation of 
the ? character is 0x3F, or 00111111 in binary. On the other hand, an attacker might try using 
illegal nonshortest formats, such as these: 
1. 0xC0 0xBF 
2. 0xE0 0x80 0xBF 
3. 0xF0 0x80 0x80 0xBF 
4. 0xF8 0x80 0x80 0x80 0xBF 
5. 0xFC 0x80 0x80 0x80 0x80 0xBF 
A bad UTF-8 parser might determine that all of these formats are the same, when, in fact, only 
0x3F is valid. 



070-330 

Actualtests.com - The Power of Knowing 
 

Perhaps the most famous UTF-8 attack was against unpatched Microsoft Internet Information 
Server (IIS) 4 and IIS 5 servers. If an attacker made a request that looked like 
this-http://servername/scripts/..%c0%af../winnt/system32/ cmd.exe-the server didn't correctly 
handle %c0%af in the URL. What do you think %c0%af means? It's 11000000 10101111 in 
binary; and if its brokenup using the UTF-8 mapping rules in table 12-2, we get this 
11000000 
10101111. Therefore, the character is 00000101111, or 0x2F, the slash (/) character! The 
%c0%af is an invalid UTF-8 representation of the / character. Such an invalid UTF-8 escape is 
often referred to as an overlong sequence. 
So when the attacker requested the tainted URL, he accessed 
http://servername/scripts/../../winnt/system32/cmd.exe. In other words, he walked out of the 
script's virtual directory, which is marked to allow program execution, up to the root and down 
into the system32 directory, where he could pass commands to the command shell, Cmd.exe. 
MORE INFO 
You can read more about the "File Permission Canonicalization" vulnerability at 
www.microsoft.com/technet/security/bulletin/MS00-057.asp. 
UCS-2 Unicode EncodingUCS-2 issues are a variation of hex encoding and, to some extent, 
UTF-8 encoding. Two-byte Universal Character Set, UCS-2, can be hex-encoded in a similar 
manner as ASCII characters but with the %uNNNN format, where NNNN is the hexadecimal 
value of the Unicode character. For example, %5C is the ASCII and UTF-8 hex escape for the 
backslash (\) character, and %u005C is the same character in two- byte Unicode. 
To really confuse things, %u005C can also be represented by a wide Unicode equivalent called a 
fullwidth version. The fullwidth encodings are provided by Unicode to support conversions 
between some legacy Asian double-byte encoding systems. The characters in the range %uFF00 
to %uFFEF are reserved as the fullwidth equivalents of %20 to %7E. For example, the \ 
character is %u005C and %uFF3C. 
You can view these characters by using the Character Map application included with Microsoft 
Windows. Figure 12-1 shows the backslash character once the Arial Unicode MS font is 
installed from Microsoft Office XP. 

 
Figure 12-1Usingthe Character Map application to view Unicode characters. 
Double EncodingJust when you thought you understood the various encoding schemes-and 
we've looked at only the most common-along comes double encoding, which involves 
reencoding the encoded data. For example, the UTF-8 escape for the backslash character is %5C, 



070-330 

Actualtests.com - The Power of Knowing 
 

which is made up of three characters-%, 5, and C-all of which can be reencoded using their 
UTF-8 escapes, %25, %35, and %63. Table 12-3 outlines some double-encoding variations of 
the \ character. 
Table 12-3 Sample Double Escaping Representations of \ 

Escape Comments 
%5C Normal UTF-8 escape of the backslash 
  character 
%255C %25, the escape for % followed by 5C 
%%35%63 The % character followed by %35, the 
  escape for 5, and %63, the escape for C 
%25%35%63 The individual escapes for %, 5, and C 
    

The vulnerability lies in the mistaken belief that a simple unescape operation will yield clean, raw data. The 
application then makes a security decision based on the data, but the data might not be fully 
unescaped. 
HTML Escape CodesHTML pages can also escape characters by using special characters. For 
example angle bracket(<and>)canbe represted as&it;and,the pounds sterling 
symbol can be represented as & pounds ;but wait .there,s more these cscape sequences can also 
be represented using the decimal or hexadecimal character values, not just easy-to-remember 
mnemonics, such as1t(less than )and &gt (greaterthan) for example,;it the same as  
&#x3C;(hexxadecimal value of the <charater)and is also the same &#60;decimal value of 
the < character). A complete list of these entities is available at 
www.w3.org/TR/REC-html40/sgml/entities.html. 
As you can see, many ways exist to encode data on the Web, which makes making decisions 
based on the name of a resource a dangerous programming practice. Let's now focus on remedies 
for these issues. 
Web-Based Canonicalization RemediesLike all potential canonicalization vulnerabilities, the 
first defense is simply not to make decisions based on the name of a resource if it's possible to 
represent the resource name in more than one way. 
Restrict What Is Valid Input 
The next best remedy is to restrict what is a valid user request. You created the resources being 
protected, so you can define the valid ways to access that data and reject all other requests. This 
is achieved using regular expressions, which are discussed in Chapter 8. Learning to define and 
use good regular expressions is critical to the security of your application. I'll say it just one 
more time: always determine what is valid input and reject all other input. It's safer to have a 
client complain that something doesn't work because of an over-zealous regular expression, than 
have the service not work because it's been hacked! 
Be Careful When Dealing with UTF-8 
If you must manipulate UTF-8 characters, you need to reduce the data to its canonical form by 
using the MultiByteToWideChar function in Windows. The following sample code shows how 
you can call this function with various valid and invalid UTF-8 characters. You can find the 
complete code listing on the companion CD in the folder Secureco\Chapter 12\UTF8. Also note 
that if you want to create UTF-8 characters, you can use WideCharToMultiByte by setting the 
code page to CP_UTF8. 



070-330 

Actualtests.com - The Power of Knowing 
 

void FromUTF8(LPBYTE pUTF8, DWORD cbUTF8) { 
WCHR wsz Result[MAX_CHAR+1]; 
DWORD dw  Result=MAX_CHAR; 
int iRes = MultiByteToWideChar(CP_UTF8, 
0, 
(LPCSTR)pUTF8, 
cbUTF8, 
wszResult, 
dw  Result); 
if (iRes == 0) { 
DWORD dw Err=Getlast Erorr(); 
printf("Mulyi byteto wide char ()faild ->%d\n",dw Err 
} else { 
printf("MultiByteToWideChar() returned " 
"%s (%d) wide characters\n", 
wszResult, 
iRes); 
} 
} 
* 
void main() { 
// Get Unicode for 0x5c;shouldbe\; 
BYTE pUTF8_1[]={0x5c}; 
DWORD cbUTF8_1=sizefpUTf8_1; 
from UTF8(pUTF8_1,cbUTF8_1); 
// Get Unicode for 0xC0 0xAF. 
// Should fail because this is 
// an overlong '/'. 
BYTE pUTF8_2[]={0xC0,0xAF}; 
DWORD cbUTF8_2=sizefpUTf8_2; 
from UTF8(pUTF8_2,cbUTF8_2); 
// Get Unicode for 0xC0 0xA9;shouldbe. 
// a '(c)' symbol. 
BYTE pUTF8_3[]={0xC0,0xA9}; 
DWORD cbUTF8_3=sizefpUTf8_3; 
from UTF8(pUTF8_3,cbUTF8_3); 
 
}Design "Parent Paths" Out of Your Application 
Another canonicalization issue relates to the handling of parent paths (..), which can lead to 
directory traversal issues if not done correctly. You should design your Web-based system in 
such a way that parent paths are not required when data within the application is being accessed. 
It's common to see a Web application with a directory structure that requires the use of parent 
paths, thereby encouraging attackers to attempt to access data outside of the Web root by using 
URLs like http://servername/../../boot.ini to access the boot configuration file, boot.ini. Take a 
look at the example directory structure in Figure 12-2. 



070-330 

Actualtests.com - The Power of Knowing 
 

 
Figure 12-2A common Web application directory structure. 
As you can see, a common source of images is used throughout the application. To access an 
image file from a directory that is below the images directory or that is a peer of the images 
directory-for example, advertising and private-your application will need to move out of the 
current directory into the images directory, therefore requiring that your application use parent 
paths. For example, to load an image, a file named /private/default.aspx would need to use 
<IMG> tags that look like this: 
<IMGSRC=../images/Logo.jpg> 
However, in Windows 2000 and later, the need for parent paths can be reduced. You can create a 
junction point to the images directory or a hard link to an individual file in the images directory 
from within the present directory. Figure 12-3 shows what the newer directory structure looks 
like. It's more secure because there's no need to access any file or directory by using parent 
path your application can remove multiple dots as a requirement in a valid file request 

 
Figure 12-3A common Web application directory structure using links to a parent or peer 
directory. 
With this directory format in place, the application can access the image without using parent 
paths, like so: 
<IMGSRC=images/Logo.jpg> 
You can create junction points by using the Linkd.exe tool included in the Windows 2000 
Resource Kit, and you can link to an individual file by using the CreateHardLink function. The 
following is a simple example of using the CreateHardLink function to create hard links to files. 
You can also find this example code on the companion CD in the folder Secureco\Chapter 
12\HardLink. 
/* 
HardLink.cpp 
*/ 
#include"stdafx.h" 
DWORDDoHardLink(LPCSTRszName,LPCSTRszTarget){ 
DWORD dw err=0; 
if(!CreateHardLink(szName,szTarget,NULL)) 
dw err==get last Erorr(); 
return  dw Err; 
} 
voidmain(intargc,char*argv[]){ 
if(argc!=3){ 
prient ("usage:Hard link<link name ><target>\n"); 
} 
DWORD dw err=Do Hard link(argv[1],argv[2]_; 



070-330 

Actualtests.com - The Power of Knowing 
 

if(dwErr) 
printf("Erorr calling created%d\n"dwErr); 
else 
printf("Erorr calling created%s\n",argv[2]); 
} 
NOTE 
Just say no to parent paths. If you remove the requirement for parent paths in your application, 
anyone attempting to access a resource by using parent paths is, by definition, an attacker! 

 
QUESTION 60: 
 
You are an application developer for Certkiller .com. You are modifying an application that 
was developed by another developer. The application was developed by using the Microsoft 
.NET Framework. The application accepts user input into a variable named userinput and 
saves information in a Microsoft SQL Server database. 
The application uses the following code to construct a SQL query 
string sqlquery 
sqlquery = "SELECT FROM Table1 WHERE ColumnA = '" + 
userinput=","; 
You need to improve the security of the application to reduce the likelihood of SQL 
injection attacks from user input. 
Which three actions should you perform for all user input? (Each correct answer presents 
part of the solution. Choose three) 
 
A. Remove double hyphens (--) from the input. 
B. Encode the input by using the HttpUtility.HTMLEncode method. 
C. Decode the input by using the HttpUtility.HTMLDecode method. 
D. Limit the length to the exact size of the SQL Server column where the input will be stored. 
E. Replace single quotation marks (') with two single quotation marks ("). 
F. Convert all characters to Unicode. 
 
Answer: A, D, E 
Explanation 
Preventing SQL Injection AttacksIf you design your scripts and applications with care, SQL 
injection attacks can be avoided most of the time. There are a number of things that we as 
developers can do to reduce our site's susceptibility to attack. Here's a list (in no particular order) 
of our options: 
Limit User Access 
The default system account (sa) for SQL server 2000 should never be used because of its 
unrestricted nature. You should always setup specific accounts for specific purposes. 
For example, if you run a database that lets users of your site view and order products, then you 
should set up a user called webUser_public that has SELECT rights on the products table, and 
INSERT rights only on the orders table. 
If you don't make use of extended stored procedures, or have unused triggers, stored procedures, 
user-defined functions, etc, then remove them, or move them to an isolated server. Most 



070-330 

Actualtests.com - The Power of Knowing 
 

extremely damaging SQL injection attacks attempt to make use of several extended stored 
procedures such as xp_cmdshell and xp_grantlogin, so by removing them, you're theoretically 
blocking the attack before it can occur. 
Escape Quotes 
As we've seen from the examples discussed above, the majority of injection attacks require the 
user of single quotes to terminate an expression. By using a simple replace function and 
converting all single quotes to two single quotes, you're greatly reducing the chance of an 
injection attack succeeding. 
Using ASP, it's a simple matter of creating a generic replace function that will handle the single 
quotes automatically, like this: 
<% 
function stripQuotes(strWords) 
stripQuotes = replace(strWords, "'", "''") 
end function 
%> 
Now if we use the stripQuotes function in conjunction with our first query for example, then it 
would go from this: 
select count(*) from users where userName='john' and 
userPass='' or 1=1 --' 
...to this: 
select count(*) from users where userName='john'' and 
userPass=''' or 1=1 --' 
This, in effect, stops the injection attack from taking place, because the clause for the WHERE 
query now requires both the userName and userPass fields to be valid. 
Remove Culprit Characters/Character Sequences 
As we've seen in this article, certain characters and character sequences such as , --, select, 
insert and xp_ can be used to perform an SQL injection attack. By removing these characters and 
character sequences from user input before we build a query, we can help reduce the chance of 
an injection attack even further. 
As with the single quote solution, we just need a basic function to handle all of this for us: 
<% 
function killChars(strWords) 
dim badChars 
dim newChars 
badChars = array("select","drop",";"-;"insert"; 
"delete", "xp_") 
newChars = strWords 
for i = 0 to uBound(badChars) 
newChars = replace(newChars, badChars(i), "") 
next 
killChars = newChars 
end function 
%> 
Using stripQuotes in combination with killChars greatly removes the chance of any SQL 
injection attack from succeeding. So if we had the query:? 
select prode name from product where id=1;xp_cmdshell'format 



070-330 

Actualtests.com - The Power of Knowing 
 

c:/q/yes';drop database my Db;_ 
and ran it through stripQuotes and then killChars, it would end up looking like this: 
prodName from products where id=1 cmdshell ''format c: 
/q /yes '' database myDB 
...which is basically useless, and will return no records from the query. 
Limit the Length of User Input 
It's no good having a text box on a form that can accept 50 characters if the field you'll compare 
it against can only accept 10. By keeping all text boxes and form fields as short as possible, 
you're taking away the number of characters that can be used to formulate an SQL injection 
attack. 
If you're accepting a querystring value for a product ID or the like, always use a function to 
check if the value is actually numeric, such as the IsNumeric() function for ASP. If the value 
isn't numeric, then either raise an error or redirect the user to another page where they can 
choose a product. 
Also, always try to post your forms with the method attribute set to POST, so clued-up users 
don't get any ideas --- they might if they saw your form variables tacked onto the end of the 
URL. 
SQL Server 2000 SP3 Security Features and Best Practices: Security Best Practices Checklist 
Administrator Checklist 

 



070-330 

Actualtests.com - The Power of Knowing 
 

 

 



070-330 

Actualtests.com - The Power of Knowing 
 

 



070-330 

Actualtests.com - The Power of Knowing 
 

 



070-330 

Actualtests.com - The Power of Knowing 
 

 

 
Developer ChecklistIn addition to all of the items above, the following should be considered best 
practices for developers. 



070-330 

Actualtests.com - The Power of Knowing 
 

 



070-330 

Actualtests.com - The Power of Knowing 
 

 



070-330 

Actualtests.com - The Power of Knowing 
 

 
Software Vendor ChecklistIn addition to all of the items above, the following security 
development practices have proven useful in increasing the quality and security of code in 
various development environments. 



070-330 

Actualtests.com - The Power of Knowing 
 

 

 
 

QUESTION 61: 
 
You are an application developer for Certkiller .com. A developer in Certkiller develops a 



070-330 

Actualtests.com - The Power of Knowing 
 

component named Certkiller Component. You deploy Certkiller Component to a server. After 
you execute Certkiller Component, you receive an error message that reads in part: 
"System.Security.Policy.PolicyException." 
You need to find out the cause of the error. 
What should you do? 
 
A. View the NTFS permissions of MyComponent.dll to find out the required permissions. 
B. View the permissions requested by the component at run time by using the Microsoft CLR 
Debugger. 
C. View the permissions requested by the component at run time by using the Runtime 
Debugger. 
D. View the required permissions for the component by using the Permissions View tool. 
 
Answer: D 
Explanation 
PolicyException Class 
The exception that is thrown when policy forbids code to run. 
For a list of all members of this type, see PolicyException Members. 
System.Object 
System.Exception 
System.SystemException 
System.Security.Policy.PolicyException 
<Serializable>Public Class PolicyException Inherits SystemExceptionRemarksThis exception 
is typically thrown when the code requests more permissions than the policy will grant or the 
policy is configured to prohibit running the code 
Permissions View Tool (Permview.exe) 
The Permissions View tool is used to view the minimal, optional, and refused permission sets 
requested by an assembly. Optionally, you can use Permview.exe to view all declarative security 
used by an assembly. 
permview [/output filename] [/decl] manifestfile 

 
RemarksDevelopers can use Permview.exe to verify that they have applied permission requests 
correctly to their code. Additionally, users can run Permview.exe to determine the permissions 
an assembly requires to execute. For example, if you run a managed executable and get the error, 
"System.Security.Policy.PolicyException: Failed to acquire required permissions," you can use 
Permview.exe to determine the permissions the code in your executable must receive before it 
will execute. 
ExamplesThe following command displays the permissions requested by the assembly 
myAssembly.exe to the console. 



070-330 

Actualtests.com - The Power of Knowing 
 

permview myAssembly.exeIf myAssembly.execontains a minimum request for FullTrust, the 
following output appears. 
Microsoft (R) .NET Framework Permission Request Viewer. Version 1.0.2204.18 Copyright (C) 
Microsoft Corp. 1998-2000minimal permission set:<PermissionSet 
class="System.Security.PermissionSet" version ="1"> <Unrestricted/></PermissionSet>optional 
permission set: Not specifiedrefused permission set: Not specifiedThe following command 
displays all declarative security on the assembly myAssembly.exeto the console. This command 
displays the method level security demand. 
permview /decl myAssembly.exeThe following output appears. 
Microsoft (R) .NET Framework Permission Request Viewer. Version 1.0.2204.18 Copyright (C) 
Microsoft Corp. 1998-2000Assembly RequestMinimum permission set:<PermissionSet 
class="System.Security.PermissionSet" version ="1"> <Unrestricted/></PermissionSet>Method 
A::myMethod() LinktimeCheck permission set:<PermissionSet 
class="System.Security.PermissionSet" version="1"> <Permission 
class="System.Security.Permissions.ReflectionPermission, mscorlib, Ver=1.0.2204.2, Loc='', 
SN=03689116d3a4ae33" version="1"> <MemberAccess/> </Permission></PermissionSet>The 
following command writes the permissions requested by the assembly myAssembly.exe to the 
file myOutputFile. 
permview /output myOutputFile myAssembly.exe 

 
QUESTION 62: 
 
You are an application developer for Certkiller .com. You develop an assembly for a 
Windows-based application that is installed on all computers in Certkiller . A written 
company policy states that access to the assembly is not allowed from computers at one 
office named Location1. Access to the assembly is allowed from all other locations in the 
company. One employee at Location1 is granted an exception to this policy and requires 
access to the assembly. 
You need to enable the one employee to access the assembly. You plan to achieve this goal 
by using the Microsoft .NET Framework Configuration tool. 
What should you do? 
 
A. Grant the FullTrust permission for the assembly at the enterprise level. 
Deny all permissions for the assembly at the user level. 
B. Grant the FullTrust permission for the assembly at the enterprise level and the user level. 
Deny all permissions for the assembly at the machine level. 
C. Grant the FullTrust permission for the assembly at the machine level. 
Deny all permissions for the assembly at the user level and the enterprise level. 
D. Grant the FullTrust permission for the assembly at the machine level and the user level. 
Deny all permissions for the assembly at the enterprise level. 
 
Answer: B 
Explanation 
User Policy Administration 
User policy is the lowest administrable policy level. Every user has an individual user policy 
configuration file. Any changes made to this policy level are applicable only to the current 



070-330 

Actualtests.com - The Power of Knowing 
 

logged-on user. The user policy level is restricted in what it can specify. 
Because this level is configurable by the current logged-on user, enterprise level policy 
administrators should be aware that the user might potentially alter any policy changes made on 
the user policy level. The user policy level is not able to give more permissions to an assembly 
than is specified in the higher policy levels. However, the user policy level is allowed to 
decrease permissions, which might potentially cause applications to stop functioning properly. If 
the LevelFinal attribute is applied to a code group on the machine or enterprise level, the user 
level is not allowed to tighten policy decisions that have been made on those levels. 
User level administration is appropriate in some situations to tightening security. For example, a 
user might decide to tighten security policy for assemblies that originate from the local intranet 
zone if untrusted code is found there. You might consider administering policy on this level 
when you are a user on a corporate network and believe that the security settings are not tight 
enough. 
Machine Policy Administration 
The machine policy level holds most of the default security policy. All machine and domain 
administrators have access to the machine configuration files. Machine administrators can set 
policy that excludes modification from the user level but not from the enterprise level. 
You might consider administering security policy on this level in the following situations: 
* You are not on a network or are on a network without a domain controller. 
* The computer you are administering serves a unique function. For example, if you are 
administering a public computer that is used for general Internet access by several people in a 
semi-public setting, you might want to have a unique machine policy, because the computer 
serves a unique function. Additionally, you might want to produce a specific machine policy that 
considers the security needs of specialized computers, like the servers in your enterprise. 
Enterprise Policy Administration 
The enterprise policy level affects every computer and user on the network and can only be 
administered by enterprise or domain administrators. See the section on Deploying Security 
Policy for information on deployment strategies. 
Because the runtime evaluates enterprise policy first, you can apply the LevelFinal attribute to a 
code group on this level to exclude the lower levels from making policy changes. If you do not 
apply the LevelFinal attribute to code groups on this level, administrators of lower security 
levels will be able to assign more permissions to applications without your knowledge and 
potentially create security vulnerabilities. 
You might consider administering policy on this level when every person in your enterprise uses 
an application and you want to make sure that it always receives sufficient permission to run. 

 
QUESTION 63: 
 
You are an application developer for Certkiller .com. You are developing a library assembly 
that communicates with a hardware device. Users will use the library assembly and the 
hardware device to develop custom applications. Users want their applications to be able to 
control access to the hardware device by using code access security polices. 
You need to ensure that users can code access security to restrict access to the hardware 
device. 
What should you do? 
 



070-330 

Actualtests.com - The Power of Knowing 
 

A. Create a custom permissions class. 
Modify the library installer to install this permission and a new permission set. 
B. Create a custom evidence class. 
C. Create a custom security policy and a security policy development package. 
Install this package at the same time as the library assembly. 
D. Create a publisher policy assembly for the library assembly. 
Install this assembly with the library assembly. 
 
Answer: A 
Explanation 
Implementing a Custom Permission 
All permission objects must implement the IPermission interface. Inheriting from the 
CodeAccessPermission class is the easiest way to create a custom permission because 
CodeAccessPermission implements IPermission and provides most of the methods required for a 
permission. Additionally, you must implement the IUnrestrictedPermision interface for all 
custom code access permissions. The custom permission class is required for both imperative 
and declarative security support, so you should create it even if you plan to use only declarative 
security. 
Defining the Permission ClassTo derive from the CodeAccessPermission class, you must 
override the following five key methods and provide your own implementation: 
* Copy creates a duplicate of the current permission object. 
* Intersect returns the intersection of allowed permissions of the current class and a passed 
class. 
* IsSubsetOf returns true if a passed permission includes everything allowed by the current 
permission. 
* FromXml decodes an XML representation of your custom permission. 
* ToXml encodes an XML representation of your custom permission. 
The IUnrestrictedPermission interface requires you to override and implement a single method 
called IsUnrestrictedPermission. In order to support the 
IUnrestrictedPermission interface, you must implement some system, such as a Boolean value 
that represents the state of restriction in the current object, to define whether the current instance 
of the permission is unrestricted. 
Creating Your Own Code Access Permissions 
The .NET Framework supplies a set of code access permission classes designed to help protect a 
specific set of resources and operations, focusing on those resources exposed by the .NET 
Framework. These permission classes are described briefly in the Permissions topic and in detail 
in the reference documentation for each permission class. For most environments, the built-in 
code access permissions are adequate. However, in some situations, it might make sense to 
define your own code access permission class. This topic discusses when, why, and how to 
define custom code access permission classes. 
If you are defining a component or class library that accesses a resource that is not covered by 
the built-in permission classes but needs to be protected from unauthorized code, you should 
consider creating a custom code access permission class. If you want to be able to make 
declarative demands for your custom permission, you must also define an attribute class for the 
permission. Providing these classes and making demands for the permission from within your 
class library enables the runtime to prevent unauthorized code from accessing that resource and 



070-330 

Actualtests.com - The Power of Knowing 
 

enables an administrator to configure access rights. 
There are other situations in which a custom permission might be appropriate. When a built-in 
code access permission class protects a resource but does not sufficiently control access to that 
resource, you might need a custom code access permission. For example, an application might 
use personnel records for which each employee records is stored in a separate file in such a case 
read and write access could be controlled independently for different types of employee data. An 
internal management tool could be authorized to read certain sections of an employee's personnel 
file but not to modify those sections. In fact, it might not even be allowed to read some sections. 
Custom code access permissions are also appropriate in cases where a built-in permission exists 
but is not defined in a way that enables it to protect the resource appropriately. For example, 
there might be a case in which there is UI functionality, such as the ability to create menus, that 
must be protected but is not protected by the built-in UIPermission class. In that case, you could 
create a custom permission to protect the ability to create menus. 
Wherever possible, permissions should not overlap. Having more than one permission protecting 
a resource presents a significant problem for administrators, who must then be sure to deal 
appropriately with all the overlapping permissions every time they configure the rights to access 
that resource. 
Implementing a custom code access permission involves the following steps, some of which are 
optional. Each step is described in a separate topic. 
1. Design the Permission class. 
2. Implement the IPermission and IUnrestrictedPermission interfaces. 
3. Implement the ISerializable interface, if necessary for performance or to support special data 
types. 
4. Handle XML encoding and decoding. 
5. Add support for declarative security, by implementing an Attribute class. 
6. Demand custom permission for your permission, where appropriate. 
7. Update security policy to be aware of the custom permission. 

 
QUESTION 64: 
 
You are an application developer for Certkiller .com. You are developing a Web service that 
will allow customers to access confidential information about their accounts. Client 
applications that use the Web service will provide an identifier and a password. The Web 
service will verify credentials by using a Microsoft SQL Server database. You must 
minimize the risk that account information can be intercepted during transmission. 
You need to choose an authentication method. 
What should you do? 
 
A. Use Web Service Enhancements for Microsoft .NET (WSE) to implement the WS-Security 
specification. 
B. Require client applications to encrypt an identifier and password in the SOAP header of all 
requests. 
C. Use basic authentication over SSL\TLS. 
D. Use Forms authentication over SSL\TLS, 
 
Answer: D 



070-330 

Actualtests.com - The Power of Knowing 
 

Explanation 
Secure Sockets Layer / Transport Layer Security (SSL/TLS). This is most commonly used 
to secure the channel between a browser and Web server. However, it can also be used to 
secure Web service messages and communications to and from a database server running 
Microsoft SQL Server 2000. 
Know What to SecureWhen a Web request flows across the physical deployment tiers of your 
application, it crosses a number of communication channels. A commonly used Web application 
deployment model is shown in Figure 1. 

 
Figure 1. A typical Web deployment model 
In this typical deployment model, a request passes through three distinct channels. The 
client-to-Web server link may be over the Internet or corporate intranet and typically uses 
HTTP. The remaining two links are between internal servers within your corporate domain. 
Nonetheless, all three links represent potential security concerns. Many purely intranet-based 
application convey security sensitive data between tiers for example HR and payroll 
applications that deal with sensitive employee data. 
Figure 2 shows how each channel can be secured by using a combination of SSL, IPSec and 
RPC encryption. 

 
Figure 2. A typical Web deployment model, with secure communications 
The choice of technology depends on a number of factors including the transport protocol, end 
point technologies, and environmental considerations (such as hardware, operating system 
versions, firewalls, and so on). 
SSL/TLSSSL/TLS is used to establish an encrypted communication channel between client and 
server. The handshake mechanism used to establish the secure channel is well documented and 
details can be found in the following articles in the Microsoft Knowledge Base: 
* Q257591, "Description of the Secure Sockets Layer (SSL) Handshake" 
* Q257587, "Description of the Server Authentication Process During the SSL Handshake" 
Q257586, "Description of the Client Authentication Process During the SSL Handshake 

 
QUESTION 65: 
 
You are an application developer for Certkiller .com. You are developing an application 
that needs to exchange a shared key to start of each communication with remote 
components. The exchange occurs over the Internet. 
You need to ensure that only the intended recipient can read the shared key. 
What should you do? 
 
A. Sign the shared key by using the application's private key. 



070-330 

Actualtests.com - The Power of Knowing 
 

B. Encrypt the shared key by using the application's private key. 
C. Encrypt the shared key by using the remote component's public key. 
D. Encode the shared key by using the System.Text.Encoding.UTF8 object. 
E. Encode the shared key by using the System.Text.Encoding.BigEndianUnicode object. 
 
Answer: C 
Explanation 
publickey 
A cryptographic key typically used when decrypting a session key or a digital signature. The 
public key can also be used to encrypt a message, guaranteeing that only the person with the 
corresponding private key can decrypt the message. 
privatekey 
The secret half of a key pair used in a public key algorithm. Private keys are typically used to 
encrypt a symmetric session key, digitally sign a message, or decrypt a message that has been 
encrypted with the corresponding public key. 
Public/Private Key Pairs 
Public/private key pairs are used for asymmetric encryption. Asymmetric encryption is used 
mainly to encrypt and decrypt session keys and digital signatures. Asymmetric encryption uses 
public key encryption algorithms. 
Public key algorithms use two different keys: a public key and a private key. The private key 
member of the pair must be kept private and secure. The public key, however, can be distributed 
to anyone who requests it. The public key of a key pair is often distributed by means of a digital 
certificate. When one key of a key pair is used to encrypt a message, the other key from that pair 
is required to decrypt the message. Thus if user A's public key is used to encrypt data, only user 
A (or someone who has access to user A's private key) can decrypt the data. If user A's private 
key is used to encrypt a piece of data, only user A's public key will decrypt the data, thus 
indicating that user A (or someone with access to user A's private key) did the encryption. 
If the private key is used to sign a message, the public key from that pair must be used to 
validate the signature. For example, if Alice wants to send someone a digitally signed message, 
she would sign the message with her private key, and the other person could verify her signature 
by using her public key. Because presumably only Alice has access to her private key, the fact 
that the signature can be verified with Alice's public key indicates that Alice created the 
signature. 
Unfortunately, public key algorithms are very slow, roughly 1,000 times slower than symmetric 
algorithms. It is impractical to use them to encrypt large amounts of data. In practice, public key 
algorithms are used to encrypt session keys. Symmetric algorithms are used for 
encryption/decryption of most data. 
Similarly, because signing a message in effect encrypts the message, it is not practical to use 
public key signature algorithms to sign large messages. Instead, a fixed-length hash is made of 
the message and the hash value is signed. For more details, see Hashes and Digital Signatures. 
Each user generally has two public/private key pairs. One key pair is used to encrypt session 
keys and the other to create digital signatures. These are known as the key exchange key pair and 
the signature key pair, respectively. 
Note that although key containers created by most cryptographic service providers (CSPs) 
contain two key pairs, this is not required. Some CSPs do not store any key pairs while other 
CSPs store more than two pairs. 



070-330 

Actualtests.com - The Power of Knowing 
 

All keys in CryptoAPI are stored within CSPs. CSPs are also responsible for creating the keys, 
destroying them, and using them to perform a variety of cryptographic operations. Exporting 
keys out of the CSP so that they can be sent to other users is discussed in Cryptographic Key 
Storage and Exchange. 

 
QUESTION 66: 
 
You are an application developer for Certkiller .com. You develop a library assembly that 
contains diagnostic utility classes. This library assembly is installed in the global assembly 
cache on all client computers on Certkiller 's network. 
You develop a Windows Forms application that calls the library assembly. You 
successfully test the application on your computer, and then you deploy the application to a 
Web folder on the intranet. Further testing reveals that when you run this application from 
the intranet, a SecurityException exception is thrown when the application is loading. 
You need to correct the problem that is causing the SecurityException exception. 
What should you do? 
 
A. Add the following code segment to the library assembly. 
[assembly: AllowPartialTrustedCallers] 
B. Add the following code segment to the Windows Forms application assembly. 
[assembly: AllowPartiallyTrustedCallers] 
C. Add the following code segment to the library assembly. 
[assembly: PermissionSet(SecurityAction.RequestOptional, Name = 
"Loca 
D. Add the following code segment to the Windows Forms application assembly. 
[assembly: PermissionSet(SecurityAction.RequestMinimum, Name = 
"Local 
 
Answer: D 
Explanation 
.NET permissions 
are grouped into NamedPermissionSets. The platform includes the following non-modifiable 
built-in sets: Nothing, Execution, FullTrust, Internet, LocalIntranet, SkipVerification. The 
FullTrust set is a special case, as it declares that this code does not have any restrictions and 
passes any permission check, even for custom permissions. By default, all local code (found in 
the local computer directories) is granted this privilege. 
The above fixed permission sets can be demanded instead of regular permissions: 
[assembly:PermissionSetAttribute( 
SecurityAction.RequestMinimum, 
Name="LocalIntranet")] 
Here is a summary of some facts or rules: 
1. If you want to restrict the permissions given to an assembly to only those contained in the 
associated permission set, you must tick the code group option "The policy level will only have 
the permissions from the permission set associated with this code group". Otherwise what is 
granted to the assembly is the permissions of the particular assocated permission set plus 
permissions of the associated permission set of the inherited code group ("All_Code" group). 



070-330 

Actualtests.com - The Power of Knowing 
 

2. All assemblies must be given "Enable assembly execution" security permission so that it can 
be run or launched. 
3. Permissions included in an assembly's associated permission set that are above the logged-in 
user's previllege will not be granted. 
4. A strongly named assembly can only be called by a fully-trusted caller, unless this 
assembly states AllowPartiallyTrustedCallers. When you use this attribute, it means that you 
have fully reviewed your code and there is no security flaw that may be used by luring attackers 
- such as a improperly used Assert. Not all system assemblies are marked with this attribute. You 
can look at the assembly's manifest to see whether it has that attribute. 
5. However, an assembly belonging to the root "All_Code" code group can be called by 
partially-trusted callers, even if they are strongly named. This is probably because, if you don't 
impose a particular security control on an assembly, the runtime security thinks that this 
assembly is not extremely critical. 
6. When you states AllowPartiallyTrustedCallers in an assembly, or let it stay in the "All_Code" 
code group, a permission-checking stack walk is still going to be triggered for every attempt to 
access any controlled resource. The only difference is if you improperly make a Assert you will 
make luring attacks possible. 

 
QUESTION 67: 
 
You are an application developer for Certkiller .com, which is a financial services company. 
You are developing an ASP.NET Web application that will be used by Certkiller 's 
customers. Customers will use the application to access their portfolios and to view 
business and financial reports. The customers are divided into two categories named 
Standard and Premier. The Premier customers will have access to an additional set of 
reports and analysis. You plan to use roles named Standard and Premier to differentiate 
the two customer categories. 
The application will use Forms authentication to authenticate all users and assign each 
authenticated user to either the Standard role or the Premier role. Web pages that are 
accessible only be Premier customers are in a subfolder named Premier. Web pages that 
are accessible by both categories of customers are in the application root. 
You need to configure URL authorization for the application. You plan to achieve this goal 
by adding configuration elements to the Web.config file in the application root. 
Which elements should you use? 
 
A. <authorization> 
<deny users=?"/> 
</authorization> 
<location path="Premier"> 
<system.web> 
<authorization> 
<allow roles="Premier"/> 
<deny users="*"/> 
</authorization> 
</system.web> 
</location> 



070-330 

Actualtests.com - The Power of Knowing 
 

B. <authorization> 
<deny users="?"/> 
</authorization> 
<location path="Premier"> 
<system.web> 
<authorization> 
<deny users="*"/> 
<allow roles="Premier"/> 
</authorization> 
</system.web> 
</location> 
C. <authorization> 
<deny users="?"/> 
<deny roles="Premier"/> 
<allow users="*"/> 
</authorization> 
<location path="Premier"> 
<system.web> 
<authorization> 
<allow roles="Premier"/> 
</authorization> 
</system.web> 
</location> 
D. <authorization> 
<deny users="?"/> 
</authorization> 
<location path="Premier"> 
<system.web> 
 
Answer: A 
Explanation 
URL Authorization 
Internet Information Services (IIS)6.0 works with Authorization Manager, a management tool 
that is available with the Microsoft(r) Windows(r)Server 2003 family of operating systems, to 
implement IIS URL authorization. 
OverviewAuthorizing user access to Web application resources requires the management of 
many Access Control Lists (ACLs). In turn, maintaining ACLs requires administrators to track 
precisely which permissions are needed on each resource for each user or group to perform 
meaningful tasks. IIS URL authorization allows Windows administrators to simplify access 
management by authorizing user access to the URLs that comprise a Web application. 
When a user requests access to a URL, IIS URL authorization validates the user's access based 
on that user's roles, which can be defined in Lightweight Directory Access Protocol (LDAP) 
queries, custom user roles, and Authorization Manager scripts (BizRules). This allows 
administrators to simplify access control management by controlling all user access to URLs 
instead of controlling access per ACL on each resource. 
IIS URL authorization is implemented as an Internet Server API (ISAPI) interceptor (in the 



070-330 

Actualtests.com - The Power of Knowing 
 

diagram below, URL Authz ISAPI). When an application, virtual directory, or URL is 
configured to use IIS URL authorization, each request to a URL will be routed to the URL 
authorization ISAPI interceptor. The URL authorization ISAPI interceptor will use 
Authorization Manager (in the diagram, .NET Authz Framework) to authorize access to the 
requested URL. The URL must be associated with an Authorization Manager policy store that 
contains the authorization policy for the URL. Once the client has been authorized to access the 
URL, the URL authorization ISAPI's Execute URL feature (in the diagram, ExecURL) will pass 
the request to the appropriate handler for the URL, such as ASP.dll, another ISAPI, or the Static 
File Handler. 

 
By using IIS6.0 URL authorization, an administrator can control access based on information 
that is only available at runtime. For example, if you have a Web page that should only be 
available to employees in a given cost center or to employees of a certain age, you can assign 
roles to the correct users based on LDAP queries that will check the cost center or age attributes 
on a user's object. If employees can only access certain pages on certain days of the week or 
during a certain time of day, a BizRule can be created which grants access to the URL based on 
these values or any value that can be asserted at runtime, including IIS Server Variables. 
Using URL AuthorizationTo use URL authorization in IIS6.0 you must enable the ISAPI 
interceptor, Urlauth.dll. In addition, you must set the following metabase properties on the 
application, virtual directory, or URL (Web site): 
1. AzEnable: Enables URL authorization for the virtual directory, application, or URL that 
corresponds to the entry in the metabase. 
2. AzStoreName: Associates an Authorization Manager store with the virtual directory, 
application, or URL. 
3. AzScopeName: Associates the virtual directory, application, or URL with a scope. This scope 
will be the name of a scope in the IIS6.0 URL authorization application in the Authorization 
Manager policy store referred to in the AzStoreName attribute. If no scope or an empty string is 
specified, the default scope of the IIS6.0 URL authorization will be used. 
4. AzImpersonationLevel: Determines the impersonation behavior for the application. This 
allows you to configure the Web application to impersonate the client user, the IIS worker 
process, or the IUSER_computername account for the worker process. Each setting significantly 
changes the environment and implied design of the Web application. 
Sample ScriptThe sample script below, written in Microsoft Visual Basic(r) Scripting Edition 
(VBScript), marks the root of the first site as a URL in "MyAZScope", which is defined in the 
MyAZStore.xml file. Users with URLAccess rights in this scope will be able to access the site. 
varobjvdir=get object("IIS://localhost/w3sv/1/root");objvdir.AzEnable 
true ;objvdir_AzstoreNmae="MSAML://d:\mystore.xml";objVdir _Azscopename="myAzscope";objVdir. 



070-330 

Actualtests.com - The Power of Knowing 
 

AZimpersonationlevel=0;objVdir.setinfo();whileURL authorization 
controls access to other forms of authorization, such as ACLs or IIS directory security 
permissions settings, the application context still requires the correct IIS directory security and 
ACL permissions. IIS URL authorization allows the IIS directory security and ACL permissions 
to be more easily maintained. 
When IIS6.0 URL authorization is configured, the AzStoreName attribute in the IIS metabase 
entry for the application, virtual directory, or URL will identify an Authorization Manager 
policy store. To manage the authorization policy, run Authorization Manager and use the Open 
Policy Store. IIS6.0 URL authorization is an application in this store. The AzScopeName 
attribute in the metabase entry will be an authorization manager scope in the IIS6.0 URL 
authorization application. Use this scope to manage access to the corresponding URL. When 
configuring an application, virtual directory, or URL for URL authorization, a scope must be 
created in the authorization policy store with the same name as that specified in the 
corresponding metabase entries AzScopeName attribute. 
Enabling the ISAPI InterceptorTo use the URL authorization ISAPI interceptor (Urlauth.dll), 
you must first enable it for each Web site that requires URL authorization. 
Important You must be a member of the Administrators group on the local computer to perform 
the following procedure (or procedures), or you must have been delegated the appropriate 
authority. As a security best practice, log on to your computer using an account that is not in the 
Administrators group, and then use the Run as command to run IIS Manager as an administrator. 
From the command prompt, type runas /user:administrative_accountname "mmc 
%systemroot%\system32\inetsrv\iis.msc". 
To enable the URL authorization ISAPI interceptor 
1. In IIS Manager, expand the local computer, expand the Web Sites folder, right-click the Web 
site that you want, and then click Properties. 
2. Click the Home Directory tab, and then in the Application settings section, click 
Configuration. 
3. Click the Mappings tab, and then in the Wildcard application maps section, click Insert. 
4. In the Add/Edit Application Extension Mapping box, click Browse and browse to the 
Windows\system32\inetsrv directory. 
5. Click urlauth.dll, click Open, and then click OK. 
Related Topics* For more information on Authorization Manager, see Authorization Manager in 
Windows Help 
<authorization> Element 
Configures ASP.NET authorization support. The <authorization> tag helps control client access 
to URL resources. This element can be declared at any level (machine, site, application, 
subdirectory, or page). 
<configuration> 
<system.web> 
<authorization> 
<authorization> <allow users="comma-separated list of users" roles="comma-separated 
list of roles" verbs="comma-separated list of verbs"/> <deny users="comma-separated list 
of users" roles="comma-separated list of roles" verbs="comma-separated list of 
verbs"/></authorization>Subtags Subtag  
  
Subtag Description 



070-330 

Actualtests.com - The Power of Knowing 
 

<allow> Allows access to a resource based 
  following: 
  users: A comma-separated list of u 
  names that are granted access to th 
  resource. A question mark (?) allo 
  anonymous user;asterisk(*)a 
  all users. 
  roles: A comma-separated list of r 
  are granted access to the resource. 
  verbs: A comma-separated list of 
  transmission methods that are gran 
  access to the resource. Verbs regist 
  ASP.NET are GET, HEAD, POST 
  DEBUG. 
<deny> Denies access to a resource based 
  following: 
  users: A comma-separated list of u 
  names that are denied access to the 
  resource. A question mark (?) indi 
  that anonymous user are denied a 
  an asterisk (*) indicates that all use 
  denied access. 
  roles: A comma-separated list of r 
  are denied access to the resource. 
  verbs: A comma-separated list of 
  transmission methods that are deni 
  access to the resource. Verbs regist 
  ASP.NET are GET, HEAD, POST 
  DEBUG. 
    

RemarksAt run time, the authorization module iterates through the <allow> and <deny> tags 
until it finds the first access rule that fits a particular user. It then grants or denies access to a 
URL resource depending on whether the first access rule found is an <allow> or a <deny> rule. 
The default authorization rule in the Machine.config file is <allow users="*"/> so, by default, 
access is allowed unless configured otherwise. 
Top of page 
ExampleThe following example allows access to all members of the Admins role and denies 
access to all users. 
<configuration> <system.web> <authorization> <allow roles="Admins"/> <deny 
users="*"/> </authorization> </system.web></configuration> 


